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Abstract

Work with longitudinal network survey data and the dynamic network outputs of the
statnet ERGMs has demonstrated the need for consistent frameworks and data structures
for expressing, storing, and manipulating information about networks that change in time.
Motivated by our requirements for exchanging data among researchers and various analy-
sis and visualization processes, we have created an R package dynamicnetwork that builds
upon previous work in the network, statnet and sna packages and provides a limited func-
tional implementation. This paper discusses design issues and considerations, describes
classes and forms of dynamic data, and works through several examples to demonstrate
the utility of the package. The functionality of the rSoNIA package that uses dynamic-
network to exchange data with the Social Network Image Animator (SoNIA) software to
create animated movies of changing networks from within R is also demonstrated.

Keywords: dynamic networks, network animation, longitudinal networks, SoNIA, Java, R,
data exchange, modeling, disease transmission.

1. Motivation

The relational data-sets available for network researchers are becoming more complex, due in
part to the use of data available from the Web, increasing sophistication in methods for data
collection, and the availability of powerful tools and computing resources. Advances in storage
techniques and analysis software continue to emerge, yet the conversion and manipulation
of data remains challenging. As the costs of data collection, management and specialized
analytic tool development increase in step with the sophistication and complexity of the
data, the need for clarity and interoperability is becoming critical. Because of its acceptance
in multiple research areas, its large existing code base, and a plug-in design structure to
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facilitate communication between specialized packages, R (R Development Core Team 2007)
provides natural host environment for developing inter-domain tools, provided that suitable
common data formats can be developed and agreed upon.

This paper describes R packages developed by the CSDE Network modeling group to facil-
itate internal data exchange and analysis of rich, longitudinal, relational data, such as that
produced by simulations and studies of disease dynamics'. The exact implementations of the
packages described here are preliminary (not yet robust enough for research use) and may
be drastically restructured and improved. Yet the discussion and examples will be useful for
users who wish to approach the forefront in visualization, as well as establishing working ex-
amples of common flexible data structures that may help in the design of this or future tools,
reducing the proliferation of incompatible data formats. This paper assumes a familiarity
with R, and general concepts of network analysis. We also recommend reading the paper
describing the use and structures of the network package for representing rich relational data
(Butts 2008; Butts et al. 2007).

2. Dynamic networks

Renewed interest in studying time-varying relations has been emerging, perhaps due to the
recent widespread awareness of network perspectives and the increasing feasibility of collecting
and analyzing rich dynamic data. There are many ways of measuring longitudinal relations
and coding them for storage and analysis. Early efforts at capturing network change over
time used panel data, in which data were collected in the form of discrete ‘waves’, and sets
of matrices were used to describe the states of bundles of relations at multiple points in time.
Another common way of documenting dynamic networks is to record relations between nodes
as lists specifying pairs of node identifiers and a series of intervals giving the starting and
ending times of relationship activity. An example of this would be egocentric sex history self
reports, or logs of phone conversations. Many kinds of traditional network analysis discard
timing information and focus on relational structures. Alternatively, research may focus
on the longitudinal aspects of the data using time series techniques but ignore the relational
component. The combined use of timing and relational information is usually named ‘Dynamic
Network Analysis.” Any set of relational data containing time information can be referred
to as a ‘dynamic network.” Confusingly, the term ‘dynamic network’ is often used in the
literature to describe various specific subclasses:

e Networks in which the edge and node sets remain fixed, but values of attributes on
nodes or edges may vary in time (transmission models)

e Networks in which edges are added or deleted over time (computer networks, friendship
relations)

e Networks in which the weights of edges change over time (neural networks, exchange
networks)

e Networks in which nodes are added or removed in time (ecological food webs, organiza-
tions)

!This work is a product of many interesting discussions in the CSDE network modeling team includ-
ing Carter Butts, Steve Goodreau, Mark S. Handcock, Dave Hunter, James Moody, Martina Morris, Deven
Hamilton, Pavel N. Krivitsky and Krista Gile. Thanks to Deven for edits and comments on drafts.
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Clearly these categories are not exclusive as most real world networks have some elements
of each. The distinctions are mostly about what features modelers believe are most crucial
for their problems. However, the data structures necessary to represent these dynamics are
radically different. In order to support general research, we must be able to express all of the
above in a single data structure.

We have found it useful to draw some finer distinctions among the kinds of edge-changing
dynamic networks:

renewal dynamics in which an edge between a particular node pair may be renewed,
switched on and off, having multiple active and inactive spells/intervals. In the case of
an attribute, a variable which can have an arbitrary number of states over time.

non-renewal dynamics in which the existence of an edge can be defined by a single spell
or interval; once it is deleted it cannot come back. Or a variable with a single state
change.

time-function dynamics where the existence (weight) of an edge or value of a variable
is defined by a time-varying function specifying a continuous value range over a time
period (not dealt with in dynamicnetwork at this time)

These distinctions are useful because non-renewal networks can be represented with much
simpler data structures and input formats. Relations can be expressed as single ‘row’ or
observation with a single start time and end time. When the renewal constraint is relaxed,
data structures must allow for the fact that some relations may toggle more often than others,
necessitating some compromises on memory efficiency or more advanced design.

In order to measure or model the properties of an entity (relation or attribute) changing in
time, we need to be clear if we are using a discrete-time (in which values of measurements
represent discrete blocks of time, usually at regularly-spaced intervals) or continuous-time
(in which values represent instantaneous observations at arbitrary time points) methods.?
Both discrete and continuous techniques have merit (and when the data have already been
collected, the decision may be moot) but each have implications for the concepts that should
be applied to the data and how it can be accurately represented.

Of course in addition to the complexities of representing the temporal aspects of relations,
we need to be able to encode networks having a wide range of features and distinctions, such
as those supported within the network package (Butts et al. 2007). Networks may need be
directed, undirected, bipartite, permit multiple types of edges between nodes, have missing
or unobserved data, permit hyper-edges, to name a few examples. We may need to attach
arbitrarily complex objects to nodes or edges. We would like to have a consistent way of
representing all of these options, expressing changes of the properties of nodes over time
(such as changes in size, infection status, etc.) along with edge dynamics in an intuitive way.

2For more on this, and how it relates to networks, see the discussion in Bender-deMoll and McFarland
(2006)



4 Packages dynamicnetwork and rSoINITA
3. Previous work

3.1. Stacks of matrices

The dynamicnetwork package builds upon a great deal of previous work and package struc-
tures. Historically when sociologists have longitudinal network data to work with the number
of individuals in the network is not large and the simplest mode to express the data is a set
of socio-matrices corresponding to the waves of the survey (Newcomb 1961; Zachary 1977;
Sampson 1968). The widely accepted UCINET (Borgatti et al. 1999) software for network
analysis works in this way. The original versions of the sna package for R (Butts 2007), im-
plemented a logical extension of this as the ‘graph stack’, a set of socio-matrices such that
the value of the relation between i and j observed at time ¢ is indexed by a triple [¢, 1, j]. If
we were to print out an example network of this structure to the R terminal, we would see
the following matrices in which the values indicate the existence of ties from the row-th node
to the column-th node:3

The socio-matrix for a 5-node network at time 1:

(,11 [,2]1 [,3] [,4] [,5]

[1,] 0 0 1 0 0
[2,] 1 0 1 0 1
[3,] 1 0 0 1 0
[4,] 0 1 1 0 0
(5,] 1 0 1 0 0

The socio-matrix for the network at time 2:

(,11 [,21 [,3]1 [,4] [,5]

[1,] 0 1 0 1 0
[2,] 0 0 1 1 0
[3,] 0 1 0 1 0
(4,] 0 0 1 0 1
[5,] 1 0 0 1 0

This system is straight-forward and effective, but quickly becomes inefficient when the network
has more than a moderate duration (> 10 time points) and/or number of individuals is
moderately large (> 100). Some of the inefficiencies of the matrix-based technique can be
reduced by taking advantage of the fact that most socio-matrices are sparse and can be
expressed internally in the software as edge-lists rather than matrices containing mostly zeros.
But using numerous graphs to represent the evolution of a network is still inefficient when few
cells in the matrix change at each time point (the network is ‘temporally-sparse’). The graph
stack is also only appropriate for discrete time data, and does not help with representing
changes in other attributes of the network.

3.2. Lists of networks

The statnet and network packages (Handcock et al. 2003) for R used the object-oriented

3Confusingly, the indices in the example have been changed from [t,4, ] to [i,4,t] so that the output from
R will appear more legibly as matrices.
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capabilities of R to further extend the functionality of sna by adding an edgelist-based data
structure back-ended in C, including support for multiplex networks, arbitrary graph, node,
and edge attributes, and a number of other helpful capabilities documented in Butts et al.
(2007). This created a very flexible structure for representing cross-sectional network data as
rich-graphs, but did not aid in dealing with longitudinal data, which needed to be stored as
a series of network objects in a list. A potential problem with this method (and also with
the graph-stack) is that there is some ambiguity about the duration of a relation because it
not possible to distinguish edges uninterrupted edges from edges that break and reform in
the subsequent time step. This approach can also be very wasteful when there are a large
number of time-steps with only minor changes to the graph.

3.3. Change lists

An alternate and more memory-efficient method is to store only the network at the first time
point, and then store a list of modifications as ‘toggles’ or deltas to the initial graph. This
change-list can be ‘played back’ to recover the state of the graph at any chosen time. This
format is quite convenient for some kinds of simulations (especially Markov) and it is how data
are output from the statnet simulate.ergm() commands. The data format is a thee column
matrix with the columns indicating the time step, the sender and the receiver respectively?.
Each row is a single relation change in the network time series, so values listed under time
step t are the changes made to the network at time step ¢ to make it the network at time
t + 1. They must be listed in time step order. An example of a very trivial network in the
format would appear as:

tstep sender receiver
(1,17 1 1 2

[2,] 5 1 3
[3,] 6 1 2
4,1] 6 4 1

This structure would be read as: starting with an empty graph, at time 1, turn on the edge
from 1 to 2, turn on the edge from 1 to 3 at time 5, turn off the edge from 1 to 2 at time 6,
and then turn on the edge from 4 to 1 at time 6.

Writing code to use data in this format can be a bit more complicated, and the general
approach can by costly in terms of processing time because obtaining the graph at any point
along the time series requires the reconstruction of the entire history of the network up to
the time point of interest. For short durations and temporally sparse networks these costs
are negligible, but as the length and temporal density increase processing times can become
prohibitive. However, one desirable feature of the technique is that the times themselves need
not be integers, so the format can be used for either discrete or continuous data.®

3.4. Time intervals

Perhaps the most parsimonious technique for storing dynamic network data is to assign a

*The documentation for the network package refers to the sender of the relation as the ‘tail’ and the receiver
as the ‘head’

5 A variation on this system is described in Ferreira and Viennot (2002) and a similar grammar for expressing
network change is include in one of the variations in Pajek’s .net format (Batagelj and Mrvar 2007).
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‘valid time interval’ or ‘spell’ to each edge in the graph. If the graph is renewal, it may
be necessary for an edge to have multiple valid intervals assigned to it. These intervals can
be stored in a ‘spell matrix’ in which each row contains information on the spells of time
for which the edge is present. This information can be stored in the form of a two-column
matrix with one row per spell, such that the first and second columns contain the onset and
termination times of the spell (respectively). Spells must be disjoint, and should be listed in
a standard order to facilitate searching. When using a simple data structure, the spell matrix
can be combined with the edge list to form a four column matrix giving the source, target,
start time, and end time of each edge.

source target start end

[1,] 1216
s 3
1

1 59
[3,] 4169
This structure indicates that the edge from 1 to 2 is active from time 1 to 6, the edge from 1
to 3 is active from time 5 to 9, and edge from 4 to 1 is active from time 6 to 9.

Alternatively, the spell matrices can be used as attributes of edges in a more complex data
structure. An example is the draft diffusion package (Butts 2006), that builds on the network
data structures by attaching spell matrices to edges as attributes. If we print the properties
of the attribute list (mel) for a single edge into text form we see:

R> myNet$mel

[[11]
[[1]]1$inl
[1] 2
[[1]1$outl
[1] 1
[[1]1]%atl
[[1]]$atl$na
[1] FALSE

[[2]]$atl$edge.timing # a variable named edge.timing
[1] #contains spell matrix
start end
[1,] 0 3
[2,] 5 10

[[2]]
(output truncated)

This structure is displayed as a set of nested lists. The first line indicates that this is the
list of all the properties belonging to edge id 1. The sub-list $inl states that the edge links
from node 2 to node 1 (indicated by the $outl element). The attributes of the edge are
stored on the $atl list. The first element, $na, has the value FALSE. The second element,
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$edge.timing, contains the spell matrix with the timing information. The matrix indicates
that the edge is active from time 0 to 4, and also from time 5 to time 10. If the output was
not truncated, it would next begin listing the attributes for edge id 2.

An advantage of the interval based system of data storage is that many standard calculations
(durations and interval comparisons for example) become trivial because the information is
already in interval form. Intervals can be used to represent either discrete or continuous time
data. However, the raw syntax for accessing the time data in such systems is very complex
and modifications to the graph can be expensive unless advanced indexing structures are used.

4. The dynamicnetwork package

Clearly there are trade-offs and advantages to each of the many possible representation styles.
The approach taken in this version of dynamicnetwork was to design a set of extensions to
the data structures of the network package and encode dynamics using a hybrid of several
approaches. The network object of the network package appears within R as a list of named
lists®:

mel the Master Edge List containing a sub list for each edge, in turn containing edge head-
and tail-sets and attributes

gal the Graph Attribute List containing various named graph meta-properties or user-assigned
attributes

val the Vertex Attribute list, with sublists for each vertex (node) containing named attributes
iel the In Edge List, an indexing structure listing the incoming edges for each vertex

oel the Out Edge List, an indexing structure giving the outgoing edges for each vertex

Users rarely interact with this structure directly, instead using a number of helpful constructor
and accessor methods to build and manipulate the network.

The functionality of the network package is not changed by dynamicnetwork but extended
with new temporal capabilities where appropriate. An advantage of R’s multiple class inher-
itance system is that objects representing rich-temporal-graphs can have both ‘dynamic’ and
‘network’ class names.” Network objects having the class ‘dynamic’ are required to have three
additional graph-level attributes: isRenewal, dynam.attr.names, dyn.edge.attr.name ex-
plained below. Many of the functions work similarly to their network counterparts, with
the addition of a two-element vector specifying the beginning and ending of a time range
to which the function will be applied on the network. As with the network package, it is
assumed that normal users should not need to manipulate data structures directly but can
instead use the provided accessor functions, moving the messy details into the background. A
version of the dynamicnetwork package is located with the supplementary files for this paper,?

5The data are actually stored in a special C back-end that can be accessed via an API to perform low level
tasks very quickly (see Butts et al. 2007).

"This means that when using overloaded functions such as plot () R will search first for the appropriate
dynamicnetwork function and call the network counterpart if it is not located.

8The source for dynamicnetwork is in supplementary file dynamicnetwork_0.0-4.tar.gz, a Windows binary
is available in dynamicnetwork_0.0-4.zip.


http://www.jstatsoft.org/v24/i07/supp/1
http://www.jstatsoft.org/v24/i07/supp/2

8 Packages dynamicnetwork and rSoNTA

the most recent version can be installed by answering ‘yes’ to the appropriate prompt in the
update.statnet command in in the statnet package.

4.1. Edge changes

The name of the structure in dynamicnetwork implemented to represent the addition and
deletion of edges in the network is the ‘Edge Time List’ (etl). It is a simple list that parallels
the ‘Master Edge List’ (mel) structure and uses the ‘time interval’ strategy, storing a single
(start, end) valid interval for each edge with the same list position as on the mellist. In a sense
the etl list serves as a ‘time index’ for looking up the edges the way the iel and oel lists
are ‘neighbor indexes’ for the nodes. Although the current design does not permit directly
representing renewal relations in the etl list, we can take advantage of the network package’s
ability to represent multiplex edges in order to represent a network in which a relation needs
to toggle multiple times. Additional ‘clone’ edges with the same starting and ending vertices
and different etl values can be added to encode later appearances of the relation. If we print
the etl list for a network having only two edges into text form we might see:

R> myGraph$etl

[[11]

[11 1 10
[[21]

[11 2 12

This indicates that the first edge starts at time 1 and ends at 10, while the second edge starts
at time 2 and ends at time 12.

This stratagem has some other desirable properties. When a dynamicnetwork object is passed
to a network algorithm that does not or cannot use the timing information, it will appear
as multiplex network. Also, when working with network data in a simulation context it is
possible to update the edge timing quickly by either incrementing the end time for the edge,
or by using NA to represent an open interval and inserting the appropriate end time when the
edge is toggled off.

Unlike the network package, the functions and structures of dynamicnetwork have not been
back-ended in C and as a consequence they are less efficient and their implementation is
relatively fragile®.

4.2. Attribute changes (using spell matrix)

Attribute changes are implemented with a system similar to the change-list format. Dynamic
attributes are stored as a two-column matrix in which the first column contains the attribute
value, and the second the time at which the attribute should take on that value. Values must
be in ascending order by time, but it is up to the user to insert them in order. The attributes
are stored on the vertex attribute list (val) in the same manner as static attributes but are
distinguished by being listed in dynam.attr.names.

9Tt is possible to create weird masking errors or for the timing data to not be copied correctly if the structures
are accessed in non standard ways
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R> myGraph$val[[10]]

$color

[,1] [,2]
[1’] "blue" ||8ll
[2 ,] "greenll "9“
[3’] "red" "10"

This example shows the vertex attribute list for node 10 of codemyGraph. The value of
‘color’ for node 10 is undefined for all times before 8, ‘blue’ from 8 to 9, ‘green’ from 9 to
10, and is ‘red’ for all values after time 10.

4.3. Vertex changes

There is not yet a mechanism for expressing node entrances and exits (births and deaths)
in dynamicnetwork. We would propose implementing this in a fashion similar to the edges
(adding a ‘Vertex Time List” with valid intervals) but this would mean that the effective size
of the network could fluctuate in time, having serious implications for many of the functions in
network. A good implementation would require more substantial modification of the network
package and thus conflicting with our goal of extending by overriding. However, in some
modeling and visualization situations it may be appropriate to emulate the addition and
deletion of nodes by adding a dynamic attribute to express that they should not be drawn
(or should not form ties) but this is not implemented in the package.

4.4. Simple example

What follows is a toy example of how to create a network programmatically, one command
at a time, and perform a few simple visualization tasks.

We want to create a dynamic network with 10 nodes and no edges.
R> dyn <- as.dynamic(network.initialize(10))

Now we add an edge to the empty network dyn, with a time interval 1 to 10, linking nodes 1
and 2.

R> dyn <- add.edge.dynamic(dyn, c(1, 10), 1, 2)
Now we add a bunch more edges with various times.

R> dyn <- add.edge.dynamic(dyn, c(2, 10), 2, 3)
R> dyn <- add.edge.dynamic(dyn, c(3, 10), 3, 4)
R> dyn <- add.edge.dynamic(dyn, c(4, 10), 4, 5)
R> dyn <- add.edge.dynamic(dyn, c(5, 10), 5, 6)
R> dyn <- add.edge.dynamic(dyn, c(6, 10), 6, 7)
R> dyn <- add.edge.dynamic(dyn, c(6, 10), 7, 8)
R> dyn <- add.edge.dynamic(dyn, c(7, 10), 8, 9)
R> dyn <- add.edge.dynamic(dyn, c(8, 10), 9, 1)
R> dyn <- add.edge.dynamic(dyn, c(9, 10), 10, 1)
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R> dyn <- add.edge.dynamic(dyn, c(9, 20), 10, 1)
R> dyn <- add.edge.dynamic(dyn, c(9, 20), 10, 5)
R> dyn <- add.edge.dynamic(dyn, c(9, 20), 10, 3)
R> dyn <- add.edge.dynamic(dyn, c(9, 20), 10, 8)

Now add some attributes. First give vertex ten the color blue at time 8.

R> dyn <- set.dynamic.vertex.attribute(dyn, "color", "blue",
+ valid.time = 8, v = 10)
R> dyn <- set.dynamic.vertex.attribute(dyn, "color", "green',
+ valid.time = 9, v = 10)
R> dyn <- set.dynamic.vertex.attribute(dyn, "color", "blue",
+ valid.time = 10, v = 10)

A quick way to examine the dynamics of a network would be to plot a series of ‘snapshots’ of
the network, showing the edges and attributes present at each time.

Now plot a series of slices through our example network to show it at various times.

R> par(mfrow = c(3, 3))

R> for(p in 2:10) {

+ slice <- get.slice.network(dyn, p)

plot(slice, vertex.col = get.vertex.attribute(slice, "color"),
vertex.cex = 5, main = p)

}

+ + +

The graphic output resulting from the command is shown in Figure 1.

Another simple and effective technique for getting an overview perspective on the dynamics
of a network is to plot the spells/intervals associated with the edge and node events on a
timeline. This shows none of the connectivity information, but makes it possible to visually
asses rates and durations of events. We can combine the two approaches, allowing the user
to use the timeline to select what snapshot to view. When called with pickSlice = TRUE,
the plot will wait until the user clicks on a point on the timeline before drawing the graph for
the corresponding time slice.

R> plot.intervals(dyn)

The graphic output resulting from the command is shown in Figure 2.

If we call plot() without specifying a time interval, we implicitly call the plot.network()
function and draw a network that is the union of all the edges (all the edges ever present in
the graph’s history). Because all of the edges are present at time 10 in our example, this looks
structurally like the network at time 10. As we are looking at the entire time range there
multiple values of the attributes for each node, and we lack a rule to determine the coloring.

Make a new plot window and plot the all-time network.

R> plot.new()
R> plot(dyn)
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Figure 1: Graphical output of plot() command showing nine time steps of the dynamicnet-
work example.
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Figure 2: Graphical output of the plot.intervals() command for the example network.
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time: all

Figure 3: Graphic output of the plot.network command.

The graphic output resulting from the command is shown in Figure 3. Edge timing informa-
tion is not used.

Because dynamic network data arrive in any of the forms we discussed, dynamicnetwork
includes a number of methods for converting other structures into the network objects, in-
cluding lists of networks, change-lists, and intervals formats. These constructors are explained
in more detail in the Appendix, along with a listing of some other basic methods for working
with time data.

5. Visualizing dynamics as network animations

5.1. Why visualize?

Summary statistics that describe the properties of networks have been improving over the
years, but still leave much to be desired as a means for succinctly communicating the struc-
ture of a network data-set to a reader or research team member. Graphical depictions of
networks are often used although, as with any representation of multi-dimensional structures
in lower dimensions, they usually must introduce some distortion of the distances or selec-
tive compression of less interesting features in order to create a 2D display. The particular
details of the distortions in an image are a function of the drawing algorithm used to create
it and the structure and subject of the input network. Visualizations often serve as a shared
point of reference for discussion, making it possible to effectively demonstrate complicated
models without hand-waving. There are myriad algorithms available for creating these types
of visualizations, each with their own advantages and disadvantages, and several of them are
included in the plot.network() function of the network package.
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Figure 4: Example of three levels of time aggregation for the same data, movies of a sim-
ulation of disease spread, with 1 day, 5 year, and 10 year windows of aggregation. Com-
plete movies in .mov format are located with the supplementary files for this paper as
5seedNoNghMomentary.mov, 5seedNoNghbyear .mov, and 5seedNoNgh.mov.

A natural way of showing the time component of relational structures is to use animations—
at least when communication with a viewer is not restricted to the printed page. Bender-
deMoll and McFarland (2006) argue that viewing animated data may make it more accessible
to researcher’s intuitions, allowing us to use the advanced motion and pattern detection
capabilities evolved into our perceptual systems. Network animations are also very helpful as
debugging tools. Errors or miss-specification of a simulation model often became glaringly
obvious once its output is rendered in a visual form. Visualization should not replace rigorous
numeric analysis and hypothesis testing. Overly ‘flashy’ animations can be distracting, and
should be used judiciously. Animations seem to increase anthropomorphizing and projection
of causality on to co-occurring events, partially because our ability to critically examine
network diagrams is as yet undeveloped. Despite these drawbacks visual representations and
animations are evolving into increasingly valuable research tools coincident with our increasing
ability to generate them in an efficient and principled way.

5.2. Network time-scales

In order to create an animation of a network we need to know what that graph looks like at
each point in time. But to show a single graph for a dynamic network, we need to specify
what time range we are going to look at. In other words, although network data may be given
a form such that they describe the state of the relations at each consecutive day, it may be
more useful from an analytic perspective to consider instead the network formed by the set of
all relations that take place in a month’s time. These networks may show very different kinds
of structures (trivially, we expect the month-long network to be denser) and the appropriate
time-scale for a specific data-set will depend on the methods of data collection, the pace of
change in the network, and the researcher’s questions (see Figure 4).

5.3. Applying layouts

The basic model employed for visualization is that the relations and nodes of a dynamic
network can be treated as events that specify various properties and have time information

13
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attached. These events can be grouped into a series of bins according to their valid intervals,
with all the edge events in a bin defining the relations and attributes of a cross-sectional
network for the corresponding time period. Once the data have been binned up according to
the user’s specifications, layout algorithms can be applied to the cross-sectional networks in
succession in order to determine appropriate placement for each node based on the weights
of its connections to other nodes. Exactly how this is done depends on the layout algorithm,
but the general idea is to optimize positions until the distances between nodes as measured
on the paths of the network correspond as closely as possible to the distances between nodes
on the layout.

The layouts of each cross-sectional ‘slice’ of the dynamic network serve as ‘key frames’ in
a movie, snapshots of the network structure regularly spaced along a timeline. Once a key
frame has been created for each bin, we can render a sequence of frames between the keyframes
such that the nodes’ coordinates are smoothly interpolated to give the visual impression of
continuous motion. In addition, the bins can be allowed to overlap, somewhat like a rolling
average. In a number of visualizations we found it desirable to see the moment-to-moment
changes in the network against a slower-moving structure of node positions. We were able
to achieve this using renders that are on a different time-scale than the layout slices, and
adjusting the ‘offset’ (the relative position of the leading edge of the render). In other words,
in many cases we could construct the layouts and node positions using networks built from
an entire year’s data, but animate through the networks showing only one day’s worth of ties
at a time. There are of course a large number of tricks and techniques involved in making
this work well.10

The algorithm we have found most useful in constructing network animations is a variant
of the method of Kamada and Kawai (1989), an energy optimization procedure that treats
the network as if it was a collection of springs with resting length proportional to the graph-
theoretic path distance between the nodes. The algorithm uses an energy minimization tech-
nique to squash the tangle of springs flat onto the page while introducing as little distortion
as possible.!! The calculations needed to compute the shortest paths for a single network and
to perform the optimization can be very expensive and they scale quite badly with network
size. In order to create an animation, we must repeat the calculation for each slice of the
network ('tho we get some efficiency by using the output of the previous calculation as a start-
ing point.) The size of the networks that can be effectively visualized with these techniques
depends a great deal on the properties of the networks. We find it fairly feasible for networks
up to 1k nodes and 2k edges on a modern desktop computer.?

6. The rSoNIA package

The process of creating network animations outlined in the previous section has been coded
in a Java program named SoNIA (Social Network Image Animator, see Bender-deMoll and
McFarland 2003) that permits interactive browsing of dynamic network data and exporting

10 For more information on how this is done, see Bender-deMoll and McFarland (2006); Moody et al. (2005),
and SoNIA’s online documentation (Bender-deMoll and McFarland 2003)

" The dimensionality reduction problem is essentially the same as Modern Multidimensional Scaling.

12This has been made possible by improvements in efficiency funded by a NIH grants RO1 HD41877 and
RO1 DA12831 made to the Network Modeling Project of the Center for Studies in Demography and Ecology
at the University of Washington.
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animations as a QuickTime movies. Java (1.54+) must be installed on the system in order
to run SoNIA. The rSoNIA package provides a set of methods to facilitate exporting data
and parameter settings and launching the SoNIA software in interactive or batch mode from
within R. rSoNIA consists of two major functions, launchSonia() and updateSoNIA(), as
well as a number of parameter settings objects that store the key value pairs used to control
SoNIA’s various settings. rSoNIA requires that dynamicnetwork be installed previously in
order to provide a consistent data structure within R to store and export the data. The most
recent version'® of rSoNIA can be downloaded by running the update.statnet function in
statnet and answering ‘yes’ when prompted about installing rSoNIA.

SoNIA requires a number of additional libraries such as COLT (CERN 1999) which provides
advanced numerics, and FreeHEP (FreeHEP 2000) which gives the ability to export vari-
ous image formats. R’s package installer does not appear to be well suited to dealing with
Java dependencies, so most of the details of installation are hidden from the user inside the
updateSonia() function. This command checks that an appropriate version of Java is in-
stalled, downloads the Java-based installer from the sourceforge.net repository, determines an
appropriate location to install (within the rSoNIA package) and launches it. This installer in
turn retrieves the various Java libraries, unpacks them and then asks the users to download
and install the QuickTime software and libraries (Apple Inc. 1999) from Apple’s Web site.

The launchSonia() command de-parses the passed dynamicnetwork object into a cache file,
modifies the settings objects as specified in its arguments, creates an appropriate command
string, and launches SoNIA as an external Java application from the command line using
the R system() function.!* SoNIA in turn reads the settings and the network data and
creates the appropriate layout. Although launching from within R is very convenient, a major
disadvantage is that R continues to consume a large amount of CPU resources while waiting
for SoNIA to return, making the layout process take extra time. When in interactive mode,
the SoNIA user interface will be visible, allowing the user to further configure the layout
parameters and export the resulting network. When launched with interactive = FALSE,
the Ul never appears, and the entire processes returns when the movie has been generated
and written to a file. The most commonly modified parameters can be set with arguments to
launchSonia(). The remaining parameters can be changed by modifying the values of the
properties objects in the environment before the launch.

soniaApplySettings Settings object to specify the parameters for the algorithm (maximum
iterations, etc.) and additional transformations (re-scaling, etc.)

soniaBrowseSettings Settings that control how SoNIA will step through the network when
generating an animation (render duration, offset, number of interpolated frames).

soniaGraphicsSettings Parameter settings object that controls graphic details of how net-
works will be rendered, including scaling, transparency, labeling options

sonialayoutSettings Parameter settings object that specifies how the dynamic network
data should be binned up to create animations, how edges should be aggregated, and

3The source for the version of rSoNIA used in this paper is available with the supplementary file
rSoNIA_0.0-4.tar.gz and a Windows binary as rSoNIA_0.0-4.zip.

 Tn the process of constructing rSoNIA we initially investigated using the rJava package which permits
the construction and manipulation of Java objects from within R. Although the package is quite powerful, we
found it unsuitable because it is not possible to share memory space between R (based in C) and Java directly.
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what layout algorithm should be used.
soniaMovieSettings Settings controlling movie export options, file type and name

soniaParseSettings Settings that configure the parser, giving the names of the network
variables that code for size, color of nodes and edges, etc.

Details of the specific parameters in the settings objects are available through the R docu-
mentation system.

SoNIA currently exports animations in two formats:

.mov QuickTime (Apple Inc. 1999) raster-based animation

.swf Flash vector animation (Adobe Systems Incorporated 1999).

Unfortunately Apple does not produce the necessary libraries for the linux platform, so .mov
is only available on Mac and Windows machines. The Flash export works on all platforms,
but is currently limited in the duration/number of objects it can include in a movie; this will
hopefully improve in the future. SONIA also includes the ability to store some dynamic data
in the DynetML XML format (Tsvetovat et al. 2004).

7. More complete example (faux.mesa.high)

7.1. Define an ERGM based on the faux.mesa.high network data

Faux.mesa.high is a simulated friendship network created using an ERGM (Hunter et al. 2008)
fit to a friendship network that was included in the national Longitudinal Study of Adolescent
Health Wave I (Resnick et al. 1997). In addition to friendship ties the data set includes static
vertex attributes of race, grade, and sex for each of the individuals, and the network shows
some patterns of preference or segregation based on these attributes. See Hunter (2007) or
statnet documentation for further details of the model construction.

Load the faux.mesa.high data and check which attributes are present.

R> data("faux.mesa.high")
R> list.vertex.attributes (faux.mesa.high)

[1] IIGrade" ||nall llRacell “SeX"
Define an exponential random graph model includes various attribute effects

R> fauxmodel.O1 <- ergm(faux.mesa.high ~ edges +
+ nodefactor ("Race") +

+ nodematch("Race", diff = TRUE) +

+ nodefactor ("Grade") +

+ nodematch("Grade", diff = TRUE) +

+ nodefactor("Sex") +

+ nodematch ("Sex"))



Journal of Statistical Software

Warning: The count of nodematch.Race6 is extreme.
To avoid degeneracy the terms nodematch.Race6 have been dropped.

Use the simulate () command to generate a sequence of graphs from that model. This means
we are actually going to create an animation of the modeling process rather than a substantive
dynamic model of the faux.mesa.high network. We will generate 20 networks using one of
every 100 draws so there is enough change between networks for us to see something.

R> fauxsim <- simulate(fauxmodel.01, nsim = 20, interval = 50)
Load the rSoNIA and dynamicnetwork packages

R> library("rSoNIA")

Convert the simulation output to a dynamicnetwork object

R> fauxdyn <- as.dynamic(fauxsim$networks, check.renewal = FALSE)
Launch SoNIA with the basic network just to test, then quit the application.

R> launchSonia(fauxdyn)

7.2. Add attributes

The previous example could be used to create an animation of changing edges. But our input
model included effects of node attributes, how can we show them in the animation? To use
shapes of the nodes to show the sex of the students, we need to convert the ‘sex’ attribute into
a vertex attribute of shape names and save them back into the network. Because the nodal
attributes of faux.mesa.high are fixed the features for animating dynamic attributes will not
be demonstrated.

Get the sex attribute, convert it to shapes, and save it back.

R> shapes <- get.vertex.attribute(fauxdyn, "Sex")
R> shapes <- replace(shapes, shapes == "M", "square")
R> shapes <- replace(shapes, shapes == "F", '"circle")

Now we set the shape property of all the vertices
R> fauxdyn <- set.vertex.attribute(fauxdyn, "shapes", shapes)

Now we convert race into a vertex attribute of arbitrary colors using the colorize () function
to assign colors to each category. First set vertex colors using results of a function.

R> set.vertex.attribute(fauxdyn, "color",
+ colorize(get.vertex.attribute (fauxdyn, "Race")))

Launch SoNIA in interactive GUI mode, specifying that it should read the color and shapes
variables. As ‘Grade’ is already a numeric attribute, we can map it directly to node size using
the vertex.cex parameter.

17
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R> launchSonia(fauxdyn,

+

+ + + +

7.3.

vertex.col = "color",
usearrows = FALSE,
displaylabels = FALSE,
vertex.shape = '"shape",
vertex.cex = "Grade" )

Using the SoNIA GUI

After the SoNIA application has appeared, there are a number of steps necessary to actually
create the animation to user specifications. Afterwards, when the appropriate settings for
a network have been discovered, the layout can be generated by defining the same settings

programmatically.

7.4.

Click the Apply Layout button in the layout window (Figure 5).

When the layout parameter dialog appears (Figure 6), set max passes to 5000. This
specifies the maximum number of iterations the optimization will be allowed. Set
optimum distance to 20, this specifies the desired length (in pixels) of unit-length
edges. Set comp connect value to 10, this specifies a desired length of ‘phantom’
edges used to connected disconnected components.

Click Apply and wait for the optimization process to finish laying out the first slice.
The result should appear somewhat like Figure 7.

If the layout looks good (it fits within the window, has nice component spacing) the
same parameters should be applied to all the remaining slices in the sequence, starting
each from the coordinates of the previous. Advance to the next slice layout with the >|
button. Click Apply Layout again. Change Starting Coordinates from use random
positions to from previous slice (Figure 8)

Click Apply to Remaining to run through the rest of the slices. Once the layouts have
completed the movie can be previewed or exported to QuickTime or Flash format.

Rewind the movie with the |< button, or by entering 0 in the Layout slice # field and
hitting return. Press play > to preview the movie. Choose Export QuickTime Movie
or Export Flash Movie from the Export menu to save the movie to disk.

Using SoNIA in batch mode

In order to specify this sequence of operations in batch mode it is necessary to configure
some of the parameter objects in rSoNIA. The settings are stored as key value pairs, so it is
important to modify the value and not the key, or SONIA will not be able to recognize the
parameter.

Need to specify some of the settings so it will not use defaults, set desired spacing between

connected nodes

R> sonialpplySettings$kk.opt.dist[2] <- 20
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Figure 5: Screenshot of the initial SONIA layout window.

2. Multiple component Kamada-Kawai layout Settings

Apply Multiple component Kamada-Kawai layout to slice# 0 [0.0-1.0]
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Algorithm-specific properies

max passes |S000
optimum di |25
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Figure 6: Screenshot of the layout parameter dialog in SoONIA
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Figure 7: Screenshot of the first example layout in SoNIA.
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Specify distance between un-connected nodes and components

R> soniaApplySettings$kk.comp.connect[2] <- 10

Increase height of the movie to 500 pixels

R> soniaGraphicsSettings$layout.height[2] <- 500

Decrease number of interpolated frames to reduce file size

R> soniaBrowseSettings$num.frames[2] <- 10

Generate a Flash movie in batch mode. save “myMovie” in the R working directory

R> launchSonia(fauxdyn,

+ max.iter = 5000,

+ interactive = FALSE,

+ vertex.col = "color",

+ usearrows = FALSE,

+ displaylabels = FALSE,

+ vertex.shape = '"shape",

+ vertex.cex = "Grade",

+ movie.file = file.path(getwd(), "myMovie"),
+ movie.type = "swf")

This will result in a Flash file myMovie.swf than can be viewed in a browser or embedded on
a Web page'®. For an example, please see supplementary file faux20. swf.

On Mac and Windows machines'® it is also possible export the movie as a QuickTime file.

Same command as before, but change movie.type to "mov" instead of "swf"

R> launchSonia(fauxdyn,

max.iter = 5000,

interactive = FALSE,

vertex.col = "color",

usearrows = FALSE,

displaylabels = FALSE,

vertex.shape = '"shape",

vertex.cex "Grade",

movie.file = file.path(getwd(), "myMovie"),
movie.type = "mov")

+ + + + + + + + +

An example of the QuickTime movie created is faux20.mov.

5In some installations the default directory getwd() may not be writable from Java. If the movie does not
appear, try specifying an alternate location to save the movie file
1 Unfortunately, on Windows Server 2003 this does not work due to security settings
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8. Extended example

8.1. Disease transmission and dynamic attributes

The key problem domain motivating the development of these packages is how to represent
the rich temporal networks output by a combined simulation of network dynamics and dis-
ease transmission. These networks include changing edges (sex partners) and disease status
(infection) and various static attributes (race, gender). In addition it is necessary to simulate
very large networks (n = 10,000) in order to get results that are potentially generalizable.
Previous work suggests than the amount of concurrency (overlap of simultaneous partners)
has implications for the epidemic thresholds and prevalence of disease (Morris and Kret-
zschmar 2000, 1997). We constructed a number of visualizations from output of the in-house
version of statnet in order to explore the properties of these networks. Although the size of
these networks greatly exceeds the size of the networks SoNIA can effectively visualize, the
problem can be reduced by extracting only the nodes and edges in the immediate (temporal)
neighborhood of the simulated infection.

This example requires functions in ‘buildInfectNet.R’ that are not properly part of the
dynamic network package as they include code that is quite specific to CSDE research projects.
We have included excerpts here to demonstrate the visualization process. These simulations
were generated at a stage in the research processes in which the dynamics of the network and
infection are assumed to be independent (we make the somewhat unrealistic assumption that
individuals do not take infection status into account in their behavior). This makes it so that
the simulation of the contact network evolution (based on data from Udry (2003)) and the
simulation of the disease spread over the contacts can be separated into two stages. The first
stage uses a detailed model of network dynamics including mixing and durations estimated
from real data (coded by Mark S. Handcock, Martina Morris) and produces a file specifying
the evolution of the network (in a change-list format). The stage second reads in the network
dynamics, runs a disease transmission simulation (authored by Steve Goodreau and Susan
Cassels), and produces a file giving the infection status of the nodes. For this exercise, the
probability of infection was set to 1.0, so infected nodes will always infect their partners.

In addition, we were interested in tracking the sources of the simulated ‘epidemics’ and various
details about the chains of transmission events in order to estimate the effects of concurrency.
The simulation ‘seeded’ the population at the first time step with 10 independent infections.
At each time step the infections were transmitted along the network of active ties. When
a node become infected the time step, the id of the infection strain, and the concurrency
status of the node is recorded. Concurrency is classified into multiple types depending on the
onset and termination times of an individual’s relationships and the infection status of his/her
partners. The source and data files are available with the supplementary data for this paper
(buildInfectNet.R, tel.conrsmons.txt, infect.conrsmons.bl.10comseed.05.txt) and
can be loaded in as matrices using the standard R utilities.

8.2. Loading the data

Load in the buildInfectNet code

R> source("buildInfectNet.R")
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Load edge dynamics file output by ergm simulation

R> edgeTiming <- read.table("tel.conrsmons.txt", header = TRUE)

Check that the file is a list of relations with the ids of partners start and end date for each.
R> edgeTiming[1:3,]

partnerl partner2 startdate enddate

1 6932 2 0 868
2 8204 3 0 827
3 6075 4 0 225

Load infection dynamics file with node attributes and infection times

R> infectStatus <- read.table("infect.conrsmons.bl.10comseed.05.txt",
+ header = TRUE, fill = TRUE)

Peek at the variable names in the file

R> names(infectStatus)

[1] llidll llrace" llseXll

[4] "serostatus" "time.infect" "infector.ID"

[7] "infector.recency" "infector.race" "ego.numpartners"
[10] "partner.numpartners" "seed" "concurrencytype"

[13] "concurrencychain"

Some of the relevant columns are: time.infect which gives the time when node was infected,
seed gives the id number of the infection seed, the ‘strain’ of infection, concurrencytype'”
is the type for the infecting event, concurrencychain is is the history of concurrency in
transmission events leading to this infection.

The ‘buildInfectNet.R’ code processes the edgeTiming and nodeStatus files to create a
dynamic network with the appropriate properties for visualization. One if its main functions
is to subsample the network to include only interesting nodes: those near to the infected
nodes. The code includes options that control the coloring of edges and nodes based on a
combination of input and derived properties. For example we can color the nodes by ‘race’,
the ‘strain’ of the infection the received, the ‘age’ (number of steps) in the transmission chain,
or the frequency of different concurrency relationships in the chain of infections.

Build a network including the neighbors of the infected nodes
R> infectNgh <- buildInfectNet (edgeTiming, infectStatus, neighbors = TRUE)

Use network plot command, coloring the infected nodes. This is a very large net, will take
several minutes.

7The types of concurrency are: D one of the seeds, U unknown, S strict concurrency, A concurrent-
accelerated /assisted, R residual concurrency, M monogamy.
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Figure 9: Plot of the ‘infected neighborhood’ (infectNgh) network—a 1449 node sub-sample
of the 10000 node simulation network containing all the infected nodes and their immediate
neighbors—with timing information discarded.

R> plot(infectNgh, vertex.cex = 0.3, edge.lwd = 0.1,
+ vertex.col = hiliteColor(
+ infectStatus$serostatus[infectNgh 7vJ/, "vertex.names"]))

The graphical output of the plot command is shown in Figure 9.

We can see from the image that there is one very large dense core, and a less dense group
or perhaps several smaller groups. We also see many uninfected nodes (colored white) tied
to the infected nodes. How can this be if the infection probability was 1.0?7 Presumably the
answer lies in the timing and ordering of the relationships, which are very difficult to discern
in a static image (see Figure 10).

Unfortunately, a network of ~ 2500 nodes is more than we can currently effectively deal with
in an animation, so we will have to work with the network of just the infected core. In a sense
this gives us a biased sample of the overall network, so it is important not to forget the larger
context when viewing the following examples.
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Figure 10: Edgewise connectivity does not necessarily imply temporal connectivity. In panel
(I), node a can reach node c, but ¢ cannot reach a since the (ab) edge ends before the (cb) edge
starts. When the edges’ time intervals overlap (panel II), reachability becomes symmetric.
When edge duration is short relative to the full observation window, connectivity can be
severely constrained even if the graph appears connected when time is ignored.

8.3. Timing options

In working with the CSDE simulation data we have often found it useful to aggregate networks
into time-scales much longer than the simulation time-step in order to show long-term change
in structures. The simulation aimed to capture dynamics over ten years and included 3650
daily steps. Since there is very little change in the network each day, we find it effective use
bins of length 60 (two months). In some situations we have also manipulated durations of
specific kinds of edges in order to highlight important model effects.

Convert the data into a dynamic network but this time does not include the neighbors

R> seedNormal <- buildInfectNet (edgeTiming, infectStatus,
+ neighbors = FALSE,

+ keep.infected = FALSE,

+ color.mode = "seed")

755 infected nodes

skipped 19958 out of sample relations
values

[1,]1 "8726" "#FFOOOOFF"

(output truncated)

Output notes how many relations have been skipped (because we ignore relations among
uninfected nodes ) and also gives the mapping of color codes to ‘strains’ of infection. Now set
some of the layout options because we will run in batch mode
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R>
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soniaApplySettings$kk.opt.dist[2] <- 5
soniaApplySettings$kk.comp.connect[2] <- 60

Also specify some visual settings to make it look pretty

R>
R>
R>
R>
R>

soniaGraphicsSettings$layout.height[2] <- 600
soniaGraphicsSettings$layout.width[2] <- 600
soniaGraphicsSettings$arc.width.fact[2] <- 2
soniaGraphicsSettings$node.trans[2] <- 1
soniaGraphicsSettings$node.trans[2] <- 1

It is a good idea to set the binning criteria here, otherwise SoONIA will take a really long time
to launch. Set each slice to be two months

R>

sonialayoutSettings$slice.duration[2] <- 60

But we let the slices overlap by a month

R>

soniaLayoutSettings$slice.deltal[2] <- 30

Set the number of in-between frames lower for a faster but jerkier movie

R>

soniaBrowseSettings$num.frames[2] <- 5

and set the render duration to match the slice duration

R>

soniaBrowseSettings$render.dur[2] <- 60

Execute as batch. Note that each movie may take as long as 30 minutes to compute and
export

R>

+ + + + + + + + +

launchSonia (seedNormal,

vertex.col = "color",
arc.col = "color",
vertex.shape = '"shape",
vertex.cex = "size",

usearrows = FALSE,

displaylabels = FALSE,

max.iter = 5000,

interactive = FALSE,

movie.file = file.path(getwd(), "simSeedNormal"))

An example of the movie output is simSeedNormal.mov (23MB).

We can see that contrary to our initial view of the network, when we look at it one month
at time, the network is hardly connected at al. Most nodes are in dyads with only a few
star-shaped components and no large components at all. We can only infer the the chain
of infecting events by looking at the colors (nodes with the same color are infected by the
same strain, the larger nodes are the initial seeds). Now that we are using only the infected
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nodes we can aggregate the entire time period and look ten years worth of relations as a
single network to compare the infected regions around each seed node. There is little point
in creating a movie since there will only be a single frame, but we can view this network in
SoNIA by changing the bin criteria. Relaunch SoNIA with interactive = TRUE.

Set the duration to the entire time

R> sonialLayoutSettings$slice.duration[2] <- 3650
And make sure we just make one slice

R> sonialayoutSettings$slice.delta[2] <- 3650

Edge weights will have changed due to aggregation so we use rescale instead of adjusting the
opt dist parameter.

R> soniaApplySettings$rescale.layout[2] <- "rescale layout to fit window"
Relaunch sonia in interactive mode

R> launchSonia(seedNormal, vertex.col = "color", arc.col = "color",
+ vertex.shape = "shape", vertex.cex = '"size", usearrows = FALSE,
+ displaylabels = FALSE, max.iter = 5000, interactive = TRUE)

Click Apply Layout. .., then click the Apply button in the dialog and wait for the layout
to finish. This produces an interesting image (Figure 11) in which we can see the infected
components of the graph, but we still cannot discern the ordering of the infection events.'®
Notice also the long loops of the graph linked by gray (non-infecting) edges. Another alterna-
tive would be to set keep.infected = TRUE in the the network processing script, instructing
it to adjust the ending times of infecting edges so that we can see the day-to-day changes
against a backbone of the ‘history’ of infection. We can make another movie to demonstrate
this effect.

Generate a new input network, extending the times for infected edges

R> seedSustain <- buildInfectNet(edgeTiming, infectStatus, neighbors = FALSE,
+ keep.infected = TRUE, color.mode = "seed")

Set the parameters back as they were for the first movie

R> sonialayoutSettings$slice.duration[2] <- 60
R> sonialayoutSettings$slice.deltal[2] <- 30
R> soniaApplySettings$rescale.layout[2] <- "none"

Relaunch sonia in interactive mode

R> launchSonia(seedSustain, vertex.col = "color", arc.col = "color",
+ vertex.shape = '"shape", vertex.cex = "size", usearrows = FALSE,
+ displaylabels = FALSE, max.iter = 5000, interactive = FALSE,

+ movie.file = file.path(getwd(), "simSeedSustain"))

18 Actually we cheated, using a max.iter=10000 to get a high quality image for the paper. All examples can
be run with this option, but running time will be proportionately longer.
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Figure 11: A time-collapsed view of the infected component of the network, with the paths
of each infection ‘strain’ shown in a different color.

An example of the movie output is simSeedSustain.mov (38MB).

8.4. Attribute mixing

The model specifications for the simulation included differential mixing on the race attribute,
meaning that there should be a lot more connections between nodes with the same race than
there are between races. In this graph active edges will be shown in black, and the inactive
‘dead’ backbone ties will be shown in gray. Race indicated by white and gray node colors,
and sex by node shape.

R> raceSustain <- buildInfectNet (edgeTiming, infectStatus,
+ neighbors = FALSE, keep.infected = TRUE, color.mode = "race")
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race attribute | white (8060) grey (1940)
white (3060) 31072 1151
grey (1940) 1151 8232

Table 1: ‘Mixing matrix’ for the infection network, showing counts of the numbers of ties
between nodes with various combinations of race attributes.

R> launchSonia(raceSustain, vertex.col = '"color", arc.col = "color",
+ vertex.shape = '"shape",vertex.cex = "size", usearrows = FALSE,
+ displaylabels = FALSE, max.iter = 5000, interactive = FALSE,

+ movie.file = file.path(getwd(), "simRaceSustain'))

An example of the movie output is SimRaceSustain.mov (37MB). The movie suggests visu-
ally that there are few ties between grey and white colored nodes, implying some degree of
differential mixing, but it would be better to see some numbers before making this conclusion.

Table 1 confirms that there is strong segregation by race in our simulated network, although
there are enough cross-race ties to allow the infections to cross race boundaries as some
infection paths can be seen to contain both gray and white nodes.

8.5. Age / generation time

We can also specify that the edges should be colored according to the age (in terms of number
of transmission steps) of their infecting strain. This could also be thought of as an indication of
the relative probability that each successive event would occur, assuming that the transmission
probability was set to a realistic value < 1.0.

R> ageSustain <- buildInfectNet (edgeTiming, infectStatus, neighbors = FALSE,
+ keep.infected = TRUE, color.mode = "age")

R> launchSonia(ageSustain, vertex.col = "color", arc.col = "color",
+ vertex.shape = '"shape", vertex.cex = '"size'", usearrows = FALSE,
+ displaylabels = FALSE, max.iter = 5000, interactive = FALSE,

+ movie.file = file.path(getwd(), "simAgeSustain"))

An example of the movie output is simAgeSustain.mov (34MB).

8.6. Concurrency

But the real question we are trying to explore is the relative effects of the different kinds of
concurrency in the final prevalence. To get a picture of this, we set up a coloring scheme that
maps the relative amounts of ‘concurrent’ (S, A, R, U) and ‘monogamous’ (M) transmissions
in the the infection history to the blue and red components of the edge colors. So chains
that are primarily blue indicate that most of the transmission events took place in monog-
amous relationships. A red chain indicates that individuals had multiple partners when the
transmission occurred. An early concurrent transmission followed by a series of monogamous
events results in a chain with a purplish hue.


http://www.jstatsoft.org/v24/i07/supp/16
http://www.jstatsoft.org/v24/i07/supp/17

30 Packages dynamicnetwork and rSoNTA
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Figure 12: A representation of the infection ‘trees’ in occurring in the simulated network.
Time advances vertically down the page, so the seed nodes for each infection appear at the
top and the ‘depth’ of the tree indicates the time step of the infection. The color of each edge
indicates the concurrency status of the corresponding relationship when the transmission
occurred.

R> concurSustain <- buildInfectNet (edgeTiming, infectStatus, neighbors = FALSE,
+ keep.infected = TRUE, color.mode = "chainletter")

R> launchSonia(concurSustain, vertex.col = '"color", arc.col = "color",
+ vertex.shape = '"shape", vertex.cex = '"size", usearrows = FALSE,

+ displaylabels = FALSE, max.iter = 5000, interactive = FALSE,

+ movie.file = file.path(getwd(), "simConcurSustain"))

For the final movie we animated a transition from the last time step of the movie to a set
of coordinates that position the nodes as a time-ordered tree with the seed node at the top
(Figure 12) to show an alternate view that reinforces our understanding of the network’s time
structure and the ordering of infection events.

An example of the movie output is simConcurSustain.mov (32MB). For a more refined
example, see 10seed05take3.mov (77MB).

9. Discussion and next steps

These packages require a number of improvements before they are ready for regular research
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use. The functionality demonstrated here needs to be made far more robust and several design
and theoretical issues need to be solved. In addition to the speed and efficiencies that could
be gained by moving most of the heavy lifting from R into C library code, much more sophis-
ticated C-based structures can be used in the back-end. This would also help with some of
the ordering and update/deletion problems that can arise in the existing network and dynam-
icnetwork packages. The examples shown here all used momentary slices through a dynamic
network to create cross-sectional networks. A more advanced package should include SoNTA-
like features to permit aggregation over arbitrary intervals and generate appropriate values
for edges weights and attributes. More sophisticated definitions of equality and equivalence
relations between corresponding edges and relations in network objects would be useful. We
do not have a system of notation for directly referring to an instance of an edge between a
pair of nodes at giving time. This is also an issue when dealing with multiplex edges in static
networks. Eventually the features should be integrated into the basic network package.
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A. Major new functions

A.1. Descriptions and purpose of the major new functions added

In order to give an idea of the kinds of functions we found immediately useful or necessary
when working with dynamics, we have included names and short descriptions of the functions
in dynamicnetwork

as.dynamic.network() Takes a network object, makes a copy and adds the necessary el-
ements to make it a dynamicnetwork object describing a single region of time. The
default is for edges to have the valid interval [0,1].

as.dynamic.list() Converts a list of networks to a dynamic network. First copies the data
in the first network on the list, then looks through all the other networks, adding edges
and modifying edges’ valid intervals as necessary. Assumes that the edges in the first
network have the valid interval [0,1], that all intervals have unit duration, and that
the appearance of an edge in immediately adjacent networks means that the edge was
continuously active.

as.dynamic.intervals() Converts a set of valid intervals in the form of four-column matrix
with columns source, target, start, end, into a dynamicnetwork object.

as.dynamic.changelist() Converts a change list matrix (set of toggles) into a dynamic
network. The input is a (possibly empty) network object giving the initial state of the
graph, followed by a three column matrix (time step, head node, tail node) There is
one row for each changed dyad over the entire series (i.e., time to the last time). Values
listed under time step i are the changes made to the network at time step i to make it
the network at time i+1. They are listed in time step order. This is the method used
to convert the output of a ERGM simulation.

When the subsample argument is set to a vector of node ids, only relations involving
those ids will be inserted into the the network, making it possible to easily extract a
sub-sample of relations from a much larger network.

add.dynamic.edges() Adds an edge to the network that is only ‘active’ during the specified
time interval. Edge are added using the normal add.edge internal call, but the time
values c(start,end) are stored on an Edge Time List (x$etl) that has entries in the
same order as the mel list.

get.edge.start(), get.edge.end(), set.edge.start,set.edge.end() returns or sets the
timing information attached to an edge

get.slice.network() Returns a network object that contains the appropriate edges and
attribute values for the given time. Dynamic attributes will be removed and replaced
with a static attribute with same name and appropriate value.

get.edge.ids.at() A means of getting the ids of edges in the neighborhood of a specified
node at a specified time. May return multiple edges if the network is multiplex. Kind
of a work around for the fact that we do not have a good way of addressing edges in
multiplex dynamic networks.
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edge.ids.before() Same as get edges at, but returns the most recent edge before or
intersecting with the specified time.

.matching.edgeIDs() Given two networks and an edge ID in the first, finds the id(s) of

edges in the second with matching head- and tail-sets (i.e. source and target nodes for
most networks)

edges.difference() Given two networks, returns a vector of edgelDs for edges in the

second network that do not have a corresponding edge in the first. Mostly used for
comparing the same network at two points in time in order to get a list of newly created
edges.

edges intersection() Given two networks, returns a vector of edgelDs for edges in
the second network that have a corresponding edge in the first network. Mostly used
for comparing the same network at two points in time to find the edges that have not
changed.

.dynamic.edge.attribute(), set.dynamic.vertex.attribute() Specifies that the

named attribute in the dynamic network should take on the given value at the given
time and for all later times until the next value.

This is implemented by adding attributes to val that are two-column matrices ([value,
valid.time]) with rows equal to the number of changes. So adding additional values
adds more rows to the matrix (deletion behavior not defined, but should be OK). These
attributes are considered dynamic attributes, defined by having the vertex name listed in
the graph-level attribute dynam.attr.names. Uses the internal set.vertex.attribute
method to set the value. The attribute is assumed to have the same value from
valid.time until the next specified time for the named attribute on a vertex. This
is a very naive implementation that assumes the variables will be added in increasing
time order. Violating this should give a warning and then strange results.

is.dynamic.edge.attribute(), is.dynamic.vertex.attribute() checks if an attribute

get.

name is dynamic, by looking in it the appropriate list of attributes.

verts.with() gets a set of ids corresponding to vertices that have the specified value
for the named attribute at the specified time.
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