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ABSTRACT 

Agent-based modeling and simulation (ABMS) is a new 
approach to modeling systems comprised of autonomous, 
interacting agents. ABMS promises to have far-reaching 
effects on the way that businesses use computers to support 
decision-making and researchers use electronic laborato-
ries to support their research. Some have gone so far as to 
contend that ABMS is a third way of doing science besides 
deductive and inductive reasoning. Computational ad-
vances have made possible a growing number of agent-
based applications in a variety of fields. Applications range 
from modeling agent behavior in the stock market and 
supply chains, to predicting the spread of epidemics and 
the threat of bio-warfare, from modeling consumer behav-
ior to understanding the fall of ancient civilizations, to 
name a few. This tutorial describes the theoretical and 
practical foundations of ABMS, identifies toolkits and 
methods for developing ABMS models, and provides some 
thoughts on the relationship between ABMS and tradi-
tional modeling techniques. 

1 INTRODUCTION 

Agent-based Modeling and Simulation (ABMS) is a new 
modeling paradigm and is one of the most exciting practi-
cal developments in modeling since the invention of rela-
tional databases (North and Macal, in press). ABMS prom-
ises to have far-reaching effects on the way that businesses 
use computers to support decision-making and researchers 
use electronic laboratories to support their research. The 
goals of this tutorial are to show how ABMS is: 
 

• Useful: Why ABMS is a good and even better 
modeling approach in many cases, 

• Usable: How we are progressively advancing to 
usable ABMS systems, with better software de-
velopment environments and more application 
experiences, and  
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• Used: How ABMS is being used to solve practical 
problems.  

 
This tutorial is organized into two parts.  The first part is a 
tutorial on how to think about ABMS. The background on 
ABMS and its motivating principles are described to illus-
trate its main concepts and to indicate the state-of-the-art. 
The second part is a tutorial on how to do ABMS. Some 
practical applications of ABMS are described, ABMS 
toolkits are presented, and ABMS development approaches 
are discussed. Several ABMS examples are demonstrated 
throughout the tutorial.  

2 HOW TO THINK ABOUT ABMS 

2.1 What Is An Agent?   

Although there is no universal agreement on the precise 
definition of the term “agent,” definitions tend to agree on 
more points than they disagree. Some modelers consider 
any type of independent component (software, model, in-
dividual, etc.) to be an agent (Bonabeau 2001); an inde-
pendent component’s behavior can range from primitive 
reactive decision rules to complex adaptive intelligence. 
Others insist that a component’s behavior must be adaptive 
in order for it to be considered an agent (Mellouli et al. 
2003); the agent label is reserved for components that can 
in some sense learn from their environments and change 
their behaviors in response. Casti (1997) argues that agents 
should contain both base-level rules for behavior as well as 
a higher-level set of “rules to change the rules.” The base-
level rules provide responses to the environment while the 
“rules to change the rules” provide adaptation. Jennings 
(2000) provides a computer science view of agency em-
phasizing the essential characteristic of autonomous behav-
ior. The fundamental feature of an agent is the capability of 
the component to make independent decisions. This re-
quires agents to be active rather than purely passive.  
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From a practical modeling standpoint, we consider 
agents to have certain characteristics (Figure 1):  

 
• An agent is identifiable, a discrete individual with 

a set of characteristics and rules governing its be-
haviors and decision-making capability. Agents 
are self-contained. The discreteness requirement 
implies that an agent has a boundary and one can 
easily determine whether something is part of an 
agent, is not part of an agent, or is a shared char-
acteristic. 

• An agent is situated, living in an environment 
with which it interacts with other agents.  Agents 
have protocols for interaction with other agents, 
such as communication protocols, and the capa-
bility to respond to the environment. Agents have 
the ability to recognize and distinguish the traits 
of other agents.   

• An agent is goal-directed, having goals to achieve 
(not necessarily objectives to maximize) with re-
spect to its behaviors.   

• An agent is autonomous and self-directed. An 
agent can function independently in its environ-
ment and in its dealings with other agents, at least 
over a limited range of situations.  

• An agent is flexible, and has the ability to learn 
and adapt its behaviors over time based on experi-
ence. This requires some form of memory. An 
agent may have rules that modify its rules of be-
havior. 

 

 
Figure 1: An Agent 

 
Unlike particle systems (idealized gas particles for ex-

ample) which are the subject of the field of particle simula-
tion, agents are diverse, heterogeneous, and dynamic in 
their attributes and behavioral rules. Behavioral rules vary 
in their sophistication, how much information is considered 
in the agent decisions (cognitive “load”), the agent’s inter-
nal models of the external world including other agents, 
and the extent of memory of past events the agent retains 
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and uses in its decisions. Agents also vary by their attrib-
utes and accumulated resources. The diverse nature of 
agents makes agent modeling particularly interesting! 

Agent-based modeling is known by many names. 
ABM (agent-based modeling), ABS (agent-based systems), 
and IBM (individual-based modeling) are all widely-used 
acronyms, but “ABMS” will be used throughout this dis-
cussion. The term “agent” has connotations other than 
ABMS as well. ABMS agents are different from the typical 
agents found in mobile agent systems. Mobile agents are 
light-weight software proxies that perform various func-
tions for users and to some extent can behave autono-
mously. ABMS is not the same as object-oriented simula-
tion, but the object-oriented paradigm is a useful basis for 
agent modeling, as an agent can be considered a self-
directed object with the additional capability of action 
choice. For this reason, large-scale agent-based modeling 
toolkits are almost universally object-oriented.  

ABMS has strong roots in the fields of multi-agent 
systems (MAS) and robotics from the field of artificial in-
telligence (AI). But ABMS is not only tied to designing 
and understanding “artificial” agents. Its main roots are in 
modeling human social behavior and individual decision-
making (Bonabeau 2001). With this, comes the need to 
represent social interaction, collaboration, group behavior, 
and the emergence of higher order social structure.  

2.2 The Need for Agent Based Modeling 

Agent-based modeling is becoming widespread. Why? The 
answer is because we live in an increasingly complex 
world. First of all, the systems that we need to analyze and 
model are becoming more complex in terms of their inter-
dependencies. This means that the traditional modeling 
tools are not as applicable as they once were. An example 
application area is the deregulation of the electric power 
industry. Interdependencies among infrastructures (electric 
power, natural gas, transportation, petroleum, water, tele-
communications, etc.) are becoming the focus public  at-
tention as these systems approach their design limits and 
suffer regular breakdowns. Second, some systems have al-
ways been too complex for us to adequately model. For 
example, modeling economic markets has traditionally re-
lied on the notions of perfect markets, homogeneous 
agents, and long-run equilibrium because these assump-
tions made the problems analytically and computationally 
tractable. We are beginning to be able to take a more real-
istic view of these systems through ABMS. Third, data are 
becoming organized into databases at finer levels of granu-
larity. Micro-data can now support micro-simulations. And 
Fourth, but most importantly, computational power is ad-
vancing rapidly. We can now compute large-scale micro-
simulation models that would not have been plausible just 
a couple of years ago. These observations lead us to con-
clude that our traditional modeling tools are not adequate, 
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and we need to search for new approaches that are more 
applicable to today’s world. 

2.3 Background on ABMS 

ABMS has connections to many other fields including 
complexity science, systems science, Systems Dynamics, 
computer science, management science, the social sciences 
in general, and traditional modeling and simulation. ABMS 
draws on these fields for its theoretical foundations, its 
conceptual world view and philosophy, and for applicable 
modeling techniques. ABMS has its direct historical roots 
in complex adaptive systems (CAS) and the underlying no-
tion that “systems are built from the ground-up,” in con-
trast to the top-down systems view taken by Systems Dy-
namics. CAS concerns itself with the question of how 
complex behaviors arise in nature among myopic, autono-
mous agents. 

The field of CAS was originally motivated by investi-
gations into adaptation and emergence of biological sys-
tems. CAS have the ability to self-organize and dynami-
cally reorganize their components in ways better suited to 
survive and excel in their environments, and this adaptive 
ability occurs, remarkably, over an enormous range of 
scales. John Holland, a pioneer in the field, identifies prop-
erties and mechanisms common to all CAS (Holland 
1995). CAS properties are: (1) Aggregation: allows groups 
to form, (2) Nonlinearity: invalidates simple extrapolation, 
(3) Flows: allow the transfer and transformation of re-
sources and information, and (4) Diversity: allows agents 
to behave differently from one another and often leads to 
the system property of robustness. CAS mechanisms are: 
(1) Tagging: allows agents to be named and recognized, (2) 
Internal models: allows agents to reason about their 
worlds, and (3) Building blocks: allows components and 
whole systems to be composed of many levels of simpler 
components. These CAS properties and mechanisms pro-
vide a useful framework for designing agent-based models. 
It should also be noted that Holland also developed Ge-
netic Algorithms (GA) in his research on CAS. GAs are 
generic search procedures based on the mechanics of ge-
netics and natural selection and are one of the bases for 
swarm optimization algorithms.     

2.3.1 Simple Rules Result in Emergent Organization 
and Complex Behaviors 

The discussion on the background of ABMS begins with a 
simple game developed by the mathematician John Con-
way,  the “Game of Life” (Gardner 1970). The GOL, as it 
is called, is based on cellular automata (CA). Perhaps the 
simplest way to illustrate the basic ideas of agent-based 
modeling and simulation is through CA. According to 
Casti (1994), the original notion of CA was developed by 
the physicist Stanislaw Ulam in response to a question 
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posed by the famous 20th century mathematician John von 
Neumann. The question was, “could a machine be pro-
grammed to make a copy of itself?” In effect, the question 
had to do with whether it was possible to develop a logical 
structure that was complex enough to completely contain 
all of the instructions for replicating itself. The answer 
eventually turned out to be yes, and it was eventually 
found in the abstract mathematical representation of a ma-
chine in the form of a cellular automata.  

A typical CA is a two-dimensional grid or lattice con-
sisting of cells. Each cell assumes one of a finite number of 
states at any point in time. A set of simple rules determines 
the value of each cell based on the cell’s previous state.  
Every cell is updated each period according to the rules. 
The next value of a cell depends on the cell’s current value 
and the values of its immediate neighbors in the eight sur-
rounding cells. Each cell is identical in terms of its update 
rules. A CA is deterministic in that the same state for a cell 
and its neighbors always results in the same updated state. 
The GOL has three rules that determine the next state (ei-
ther On or Off) of each cell:  
 

1. The cell will be On in the next generation if ex-
actly three of its eight neighboring cells are cur-
rently On. 

2. The cell will retain its current state if exactly two 
of its neighbors are On. 

3. The cell will be Off otherwise. 
 

Figure 2 shows snapshots from a GOL simulation. Ini-
tially, On cells are distributed randomly. After several up-
dates of all cells in the grid, distinctive patterns emerge, 
and in some cases these patterns can sustain themselves in-
definitely throughout the simulation. The eight-neighbor 
per neighborhood assumption built into the GOL deter-
mines the scope of agent interaction and the locally avail-
able information for each cell to update its state.  

 

 
(a) Initial random layout  (b) after 30 updates 

Figure 2: Game of Life Simulation 
 
Two observations are important about the GOL rules:  

(1) The rules are simple, and (2) the rules use only local 
information. The state of each cell is based only on the cur-
rent state of the cell and the cells touching it in its immedi-
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ate neighborhood. Although these are interesting findings, 
and observing the patterns created by repeated simulations 
of the GOL reveals a world of endless creations, other ob-
servations have implications for practical ABMS: 
 

1. Sustainable patterns can emerge in systems that 
are completely described by simple rules that are 
based on only local information, and  

2. The patterns that may develop can be extremely 
sensitive to the initial conditions.  

 
Wolfram has demonstrated that varying the rules in cellular 
automata produces a surprising range of emergent patterns, 
and these patterns correspond directly to a wide range of 
algorithms and logic systems (Wolfram 2002). Wolfram 
contends that simple rules can be used to understand much 
of the complexity observed in the real world.  

Based on simple rules of behavior and agent interac-
tion, natural systems seemingly exhibit collective intelli-
gence, or swarm intelligence, even without the existence of 
or the direction provided by a central authority. Natural 
systems are able to not only survive, but also to adapt and 
become better suited to their environment, in effect opti-
mizing their behavior over time. How is it that an ant col-
ony can organize itself to carry out the complex tasks of 
food gathering and nest building and at the same time ex-
hibit an enormous degree of resilience if the colony is seri-
ously disrupted? Swarm intelligence has inspired practical 
optimization techniques, such as ant colony optimization 
that have been used to solve practical scheduling and rout-
ing problems (Bonabeau et al. 1999). 

The Boids simulation is a good example of how sim-
ple rules lead to emergent and seemingly organized system 
behavior reminiscent of schooling or flocking behavior in 
fish or birds (Reynolds 2005). In the Boids model, each 
agent has three rules governing its movement:  
 

1. Cohesion: each agent steers toward the average 
position of its nearby “flockmates,”  

2. Separation: each agent steers to avoid crowding 
local flockmates, and 

3. Alignment: each agent steers towards the average 
heading of local flockmates.  

 
Here, nearby or local refers to agents in the immediate 
neighborhood of an agent as defined by some distance 
measure. Even with only these three simple rules applied at 
the individual agent level and only to the agents in its 
neighborhood, the agents’ behavior begins to appear coor-
dinated, and a leaderless flock emerges (Figure 3).   
 
(a) Initial random configuration 

 

 
(b) After 500 updates 

Figure 3: Boids Simulation 

2.3.2 Agent-Based Modeling in the Sciences 

In applications of ABMS to social processes, agents repre-
sent people or groups of people, and agent relationships 
represent processes of social interaction (Gilbert and 
Troitzsch 1999). The fundamental assumption is that peo-
ple and their social interactions can be credibly modeled at 
some reasonable level of abstraction for at least specific 
and well-defined purposes, if not in general. This limited 
scope for representing agent behaviors in ABMS contrasts 
with the more general goals of AI. From an ABMS per-
spective, some important questions become immediately 
apparent: 
 

• How much do we know about credibly modeling 
people’s behavior? 

• How much do we know about modeling human 
social interaction? 

 
These questions have spawned and to some extent rein-
vigorated basic research programs in the social sciences 
that have the promise of informing ABMS on theory and 
methods for agent representation and behavior. 
5
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Thomas Schelling is credited with developing the first 
social agent-based simulation in which agents represent 
people and agent interactions represent a socially relevant 
process (Schelling 1971, 1978). Schelling applied notions 
of cellular automata to study housing segregation patterns. 
He posed the question, “is it possible to get highly segre-
gated settlement patterns even if most individuals are, in 
fact, color-blind?” The Schelling model demonstrated that 
ghettos can develop spontaneously. Interpreted more gen-
erally, Schelling showed that patterns can emerge that are 
not necessarily implied or even consistent with the objec-
tives of the individual agents. This was an important ob-
servation that spurred interest and gave direction to the 
field of ABMS. (Note, Schelling’s initial models were not 
even done with the aid of a computer; agents were repre-
sented as coins moving on a checkerboard). Extending the 
notion of modeling people to growing entire artificial so-
cieties through agent simulation was taken up by Epstein 
and Axtell in their groundbreaking Sugarscape model (Ep-
stein and Axtell 1996). In numerous computational ex-
periments, Sugarscape agents emerged with a variety of 
characteristics and behaviors, highly suggestive of a realis-
tic, although rudimentary society. Emergent processes 
were observed including death, disease, trade, wealth, sex 
and reproduction, culture, conflict and war, and external-
ities such as pollution. 

Agent-based modeling is also used in economics. 
Some of the classical assumptions of standard micro-
economic theory are: 
 

1. Economic agents are rational, which implies that 
agents have well-defined objectives and are able 
to optimize their behavior. (the basis for the “ra-
tional agent” model used in economics and many 
other social science disciplines), 

2. Economic agents are homogeneous, that is, agents 
have identical characteristics and rules of behav-
ior, 

3. There are decreasing returns to scale from eco-
nomic processes, decreasing the marginal utility, 
decreasing the marginal productivity, etc., and 

4. The long-run equilibrium state of the system is the 
primary information of interest. 

 
Each of these assumptions is relaxed in ABMS applica-
tions to economic systems. First, do organizations and in-
dividuals really optimize? Herbert Simon, a Nobel Laure-
ate who pioneered the field of artificial intelligence, 
developed the notion of “satisficing” to describe what he 
observed people and organizations doing in the real world 
(Simon 2001). Behavioral economics is a relatively new 
field that incorporates experimental findings on psychol-
ogy and cognitive aspects of agent decision making in de-
termining people’s actual economic behavior (Smith 
1989). Second, that agent diversity universally occurs in 
6
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the real-world is a key observation of complexity science. 
Many natural organizations from ecologies to industries 
are characterized by populations whose diversity gives rise 
to its stability and robustness. Third, Arthur has identified 
“positive feedback loops” and “increasing returns” as the 
underlying dynamic processes of rapid exponential growth 
in economics (Arthur et al. 1997). Positive feedback loops 
can create self-sustaining processes that quickly take a sys-
tem away from its starting point to a faraway state. Fourth, 
long-run equilibrium states are not the only results of inter-
est. The transient states that are encountered along the way 
to a long-run state are often of interest. Furthermore, not all 
systems come to an equilibrium (Axtell 2000). The field of 
Agent-based Computational Economics (ACE) has grown 
up around the application of ABMS to economic systems 
(Tesfatsion 2002, 2005). 

Anthropologists are also developing large-scale agent-
based simulations of ancient civilizations to help explain 
their growth and decline, based on archaeological data. 
ABMS has been applied to help understand the social and 
cultural factors responsible for the disappearance of the 
Anasazi in the southwestern U.S. (Koehler et al. 2005) and 
the fall of the ancient Mesopotamian civilization 
(Christiansen and Altaweel 2004).  

Agent-based modeling is also being used in sociology. 
Macy and Willer (2002) review the agent-modeling ap-
proach as the basis for modeling social life as interactions 
among adaptive agents who influence one another in re-
sponse to the influences they receive. A recent issue of the 
American Journal of Sociology is devoted largely to agent-
based modeling in sociology (Gilbert and Abbot 2005) and 
social science computing is becoming a subfield (Sallach 
and Macal 2001). Agent-based modeling is being used in 
political science as well. For example, Cederman (2002) is 
using agent-based modeling to understand the basic proc-
esses involved in national identity and state formation.  

Cognitive science has had its own notion of agency, 
and social cognitive science is extending these ideas to so-
cial settings (Bandura 2001). Cognitive scientists are de-
veloping agent-based models of emotion, cognition, and 
social behavior based on the notion that a person’s emo-
tional state impacts their behavior as well as their social 
interactions (Gratch and Marsella 2001). The goal is to 
create synthetic agents who embody the nuanced interplay 
between emotion, cognition and social behavior. 

In addition to the social sciences, ABMS is also being 
used in the physical and biological sciences as an adjunct 
to laboratory and theoretical research. In the physical sci-
ences, ABMS is being used to model the possible emergent 
structures resulting from molecular self-assembly (Troisi et 
al. 2005). In biology, agent-based modeling is being used 
to model bacterial behavior and interaction at multiple-
scales (Emonet et al. 2005) and the self-organization of 
bacterial colonies (Krawczyk et al. 2003). 
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2.3.3 Topologies as a Basis for Social Interaction 

Cellular automata represent agent interaction patterns and 
available local information by using a grid or lattice and 
the cells immediately surrounding an agent as the 
neighborhood. Other agent interaction topologies, such as 
networks, allow an agent’s neighborhood to be defined 
more generally and flexibly. Networks more accurately de-
scribe social agents’ interaction patterns.  

Social Network Analysis (SNA) is a field with a long 
history that studies the characterization and analysis of so-
cial structure and interaction through network representa-
tions (Wasserman and Faust 1994). Traditionally, SNA has 
focused on static networks, i.e., networks that do not 
change their structure over time or as a result of agent be-
havior. Recently, much progress has been made in under-
standing the growth and change of real-world networks 
(Barabási 2002). In particular “small world” or scale-free 
networks have been discovered in a wide range of settings, 
such as the World Wide Web, membership in corporate 
executive boards, and ecological habitats.  

Dynamic network analysis is a new field that incorpo-
rates the mechanisms of network growth and change based 
on agent interaction processes (NRC 2003). Understanding 
the agent rules that govern how networks are structured 
and grow, how quickly information is communicated 
through networks, and the kinds of relationships that net-
works embody are important aspects of modeling agents 
and of “network ABMS.”  

Some of the important modeling techniques of ABMS 
have their origins in models of physical systems, and net-
work modeling is an example. The Ising system, for exam-
ple, is a model of imitative behavior in which individuals 
modify their behaviors to conform to the behavior of other 
individuals in their vicinity (Callen and Shapero 1974). 
Originally developed by Ernest Ising in 1925, the Ising 
model was used to study phase transitions in solids, for ex-
ample how individual atoms become aligned in a material 
causing it to become magnetized. In the 1990’s, social sci-
entists adapted the Ising model to study social processes. 
Opinion formation can be modeled by an Ising approach if 
the lattice assumption is relaxed so that individuals are free 
to interact with neighbors defined by a social network or 
by spatial proximity. The key behaviors of such a model 
are the sudden phase transitions that can occur without 
warning, signifying rapid opinion change. The Ising model 
has been used to model diffusion of new ideas, fads, 
friendship formation, social communication, and the spread 
of disease and epidemics. 

2.3.4 Generative Social Science 

Identifying the social interaction mechanisms for how co-
operative behavior emerges among individuals and groups 
is an interesting question with practical implications. Evo-
7

lutionary Game Theory is related to traditional game the-
ory and takes into account the repeated interactions of the 
players and their effect on strategies. Axelrod has shown 
that a simple Tit-For-Tat strategy of reciprocal behavior 
toward individuals is enough to establish sustainable coop-
erative behavior (Axelrod 1997). Young has investigated 
how larger social structures, social norms and institutions, 
arise from micro-level interactions between individuals 
(Young 1998). The broader need is for a generative type of 
social science in which the processes from which social 
structure emerges can be understood as the necessary result 
of social interactions (Epstein 2005, Sallach 2003). Pro-
gress in generative social sciences will be a fertile basis for 
developing ABMS in the future. 

We close this section with a simple ABMS example of 
social influence. In this simulation there are two types of 
agents, red and blue agents. Initially, there are twice as 
many blue agents as red agents. Each side tries to convince 
the other side of its position. An agent surrounded by more 
agents of one color than another, adopts the position of the 
dominant agent. There is one stipulation: each red agent is 
twice as convincing as each blue agent. An agent need only 
be surrounded by half as many red agents as blue agents to 
be just as likely to adopt red’s position. Thus, the total con-
vincing power of the red and blue agents is equal. The 
simulation suggests some interesting questions: will one 
type of agent have its opinion dominate or will there be a 
stable mix of positions in the long run? The simulation is 
shown in Figure 4.  

 

 
(a) Initial agent distribution 

 
(b) After 50 generations 

Figure 4: Social Influence Simulation 
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3 ABMS APPLICATIONS 

Practical agent-based modeling and simulation is actively 
being applied in many areas (Table 1). ABMS applications 
range across a continuum, from small, elegant, minimalist 
academic models to large-scale decision support systems. 
Minimalist models are based on a set of idealized assump-
tions, designed to capture only the most salient features of 
a system. These ABMS are exploratory electronic laborato-
ries in which a wide range of assumptions can be varied 
over a large number of simulations. Decision support mod-
els tend to be large-scale applications and are designed to 
answer real-world policy questions. These models include 
real data and have passed some validation tests to establish 
credibility. We will explore a couple of agent simulations 
in more detail to illustrate the approach of agent modeling.   

 
Table 1: Agent-based Modeling Applications 

Business and Organizations 
• Manufacturing 
• Consumer markets 
• Supply chains 
• Insurance 

Economics 
• Artificial financial 

markets 
• Trade networks 

Infrastructure 
• Electric power markets 
• Hydrogen economy 
• Transportation 

Crowds 
• Human movement 
• Evacuation modeling 

Society and Culture 
• Ancient civilizations 
• Civil disobedience 

Terrorism 
• Social determinants 
• Organizational net-

works  
Military 

• Command & control 
• Force-on-force 

Biology 
• Ecology 
• Animal group behav-

ior 
• Cell behavior 
• Sub cellular molecu-

lar behavior 

3.1 An Electric Power Market ABMS Application 

EMCAS (Electricity Market Complex Adaptive System) is 
an agent-based simulation model of the electric power 
market designed to investigate market restructuring and de-
regulation and to understand implications of a competitive 
market on electricity prices, availability, and reliability. 
The EMCAS model is described elsewhere from various 
perspectives including the benefits of agent-based model-
ing for deregulated electric power markets (North et al. 
2002, Koratarov 2004). The agents in EMCAS represent 
the participants in the restructured electricity market (Fig-
ure 5). Different types of agents capture the heterogeneity 
of restructured markets, including generation companies, 
demand companies, transmission companies, distribution 
companies, independent system operators, consumers, and 
regulators. The agents perform diverse tasks using special-
ized decision rules. Agents learn about the market response 
to their price-quantity bids, infer the strategies of their 
8

competitors, and adapt their actions accordingly. Agents 
continually explore new strategies in response to dynamic 
supply and demand forces and identify strategies that per-
form better. Generating company agents engage in price 
discovery, learning how they can influence the market 
through their actions to increase their utility, defined as a 
combination of profits and market share. As a prerequisite 
for a realistic model of the electric power market, EMCAS 
agents interact with and are constrained by the physics of 
the electric power grid which is represented at the individ-
ual bus level for a regional transmission network.   
 

 
Figure 5: Agents in EMCAS Electric Power Market Model 

 

3.2 An Supply Chain ABMS Application 

An agent-based model of a supply chain illustrates the 
ABMS approach and shows how a simple model can re-
veal important insights. We recast Sterman’s “Beer Game” 
simulation from its original Systems Dynamics implemen-
tation (Sterman 1989) to an agent-based simulation. The 
supply chain consists of four stages: factories, distributors, 
wholesalers, and retailers who respond to customers’ de-
mand. Various simplifying assumptions are made such as: 
there is only one commodity, no transformation of goods is 
made and no assembly of materials into products is re-
quired. The flows of goods and information in the form of 
orders between stages (agents) as well as physical ship-
ments are included in the model, but the flows of payments 
and the additional complexities of pricing, negotiation, and 
financial accounting that this would entail are not included. 
However, these aspects of supply chain agent behavior 
could easily be incorporated in the agent-based version of 
the supply chain model. 
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Supply chain agents consist of the customer, retailer, 
wholesaler, distributor, and manufacturer (Figure 6). Each 
period, supply chain agents execute behaviors: 
 

1. The customer places an order with the retailer. 
2. The retailer fills the order immediately from its 

respective inventory if it has enough inventory in 
stock (if the retailer runs out of stock, the cus-
tomer’s order is placed on backorder and filled 
when stock is replenished). 

3. The retailer receives a shipment from the whole-
saler in response to previous orders. The retailer 
then decides how much to order from the whole-
saler based on an “ordering rule.” The ordering 
decision is based in part on how much the retailer 
expects customer demand will be in the future. 
The retailer estimates future customer demand us-
ing a “demand forecasting” rule. The retailer then 
orders items from the wholesaler to cover ex-
pected demand and any shortages relative to ex-
plicit inventory or pipeline goals.  

4. Similarly, each wholesaler receives a shipment 
from the distributor, forecasts future demand by 
the retailer, and places an order with the distribu-
tor. This process continues up the chain to the fac-
tory who decides on how much to put into new 
production.  

 

 
Figure 6: The World of the Supply Chain Agent 

 
The goal of the agents in the model is to manage their 

inventory in such a way as to minimize their costs through 
judicious decisions based on how much to order each pe-
riod. When inventories are too low and there is a danger of 
running out of stock, agents order more; when inventories 
are too large and agents incur high inventory holding costs, 
agents order less. Each agent incurs a cost when holding 
stock in inventory, the inventory holding charge. Agents 
also incur a backorder charge when they receive an order 
and cannot immediately meet that order because they have 
no stock. Each agent strikes a delicate balance between 
having too much inventory, which runs up inventory hold-
9

ing costs, and too little inventory, which puts the agent at a 
greater risk of running out of stock and incurring excessive 
backorder charges. 

In this example, supply chain agents only have access 
to local information. No agent has a global view of the 
supply chain or is in a position to optimize the system as a 
whole. Agents adopt decision rules that only this local in-
formation in making their decisions. 

The results of the agent-based supply chain model ex-
actly duplicate the results from Sterman’s original Beer 
Game Simulation. The “Bull-Whip” effect, observed in 
real supply chains, is observed even in this highly simpli-
fied supply chain model. This simple agent-based model is 
a very useful foundation for more realistic models of sup-
ply chains, such as models based on supply network to-
pologies and alternative agent decision rules. Several agent 
models of supply chains have been developed with various 
enhancements such as non-local information (Macal 2003).  

4 HOW TO DO ABMS 

One goes about building an agent model in much the same 
way that one builds any type of model or simulation. First, 
identify the purpose of the model, the questions the model 
is intended to answer and the potential users. Next, sys-
tematically analyze the system under study, identifying 
components and component interactions, relevant data 
sources, and so on. The usual steps of model building ap-
ply to agent-based modeling as well. See Law and Kelton 
(2000) for an excellent description of good simulation 
model building practice. 

Agent-based modeling brings with it a few unique 
twists owing to the fact that ABMS takes the agent per-
spective, first and foremost, in contrast to the process-
based perspective that is the traditional hallmark of simula-
tion modeling. In addition to the standard model building 
tasks, practical ABMS requires one to: 
 

• Identify the agents and get a theory of agent be-
havior, 

• Identify the agent relationships and get a theory of 
agent interaction, 

• Get an ABMS platform(s) and an ABMS model 
development strategy, 

• Get the requisite agent-related data, 
• Validate the agent behavior models (in addition to 

the model as a whole), and  
• Run the model and analyze the output from the 

standpoint of linking the micro-scale behaviors of 
the agents to the macro-scale behaviors of the sys-
tem. 

 
We discuss a few of these aspects of ABMS in this section. 
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4.1 Discovering Agents 

Identifying agents, accurately specifying their behaviors, 
and appropriately representing agent interactions are the 
keys to developing useful agent models. Agents are gener-
ally the decision-makers in a system. These include tradi-
tional decision-makers such as managers as well as non-
traditional decision-makers such as complex computer sys-
tems that have their own behaviors. Even groups can be 
considered agents for some modeling purposes. 

Once the agents are defined, discovering the key agent 
behaviors is the next challenge. How can agent behaviors 
be discovered? First, get a theory of agent behavior. For 
example, one may begin with a normative model in which 
agents are attempting to optimize and use this model as a 
starting point for developing a simpler and more descrip-
tive heuristic model of behavior. One may also begin with 
a behavioral model if some applicable behavioral theory is 
available and seems appropriate. For example, numerous 
theories abound for modeling consumer shopping behavior 
based on empirical studies. Alternatively, a number of for-
mal logic frameworks have been developed in order to rea-
son about rational agents and these can serve as the basis 
for agent models. Frameworks such as BDI (Belief-Desire-
Intent) (Rao and Georgeff 1991) and BOD (Behavior-
Oriented Design) (Bryson 2002) used combined modal and 
temporal logics as the basis for reactive plans and action 
selection.  

When the behaviors of individuals are to be the basis 
for agent models for existing or hypothesized systems, 
knowledge engineering and participatory simulation are 
useful techniques to employ. Knowledge engineering con-
sists of a collection of techniques for eliciting and organiz-
ing the knowledge of experts while accounting for report-
ing errors and situational biases. Knowledge engineering 
uses structured interviews to elicit information on agent 
behaviors.  

Participatory ABMS combines the agent modeling 
paradigm with ideas from organization theory to specify 
goal-driven simulations that consist entirely of human par-
ticipants playing roles, akin to gaming, but with much 
more structure. Participatory simulations are very useful to 
set up as a prelude to developing an agent model. With 
proper structure, instruction, and discipline, people in par-
ticipatory ABMS can reveal much information about agent 
behaviors, such as: How much information are people able 
to process in the given amount of time for making deci-
sions?, What key factors and indicators do people consider 
in making their decisions?, How do people’s past experi-
ences enter into their decision-making process?, and Which 
strategies do people formulate that are most effective? Par-
ticipatory agent modeling can be used to develop insights 
into and validate plausible agent behavior models, demon-
strate agent modeling concepts to stakeholders, and test 
ideas on agent behavior in contrived situations.  
10
4.2 ABMS Development Tools 

Agent modeling can be done in the small, on the desk-
top,   
or in the large, using large-scale cluster computers, or at 
any scale in-between. 

4.2.1 Desktop ABMS 

Desktop agent-based models can be simple, designed and 
developed in a period of a few days by a single computer-
literate modeler using tools learned in a few days or weeks. 
Desktop ABMS can be used to learn how to do agent mod-
eling, test agent modeling design concepts and perform 
many types of serious modeling and analysis. Desktop 
tools include general spreadsheets and computational 
mathematics systems. One of the key features of desktop 
ABMS systems is that they are interpreted environments, 
requiring no compilation or linking steps that are required 
by general programming languages or agent-based model-
ing toolkits.   

Spreadsheets are natural tools for modelers already 
familiar with spreadsheets and macro-programming. They 
are an excellent starting point for developing desktop agent 
models. Computational mathematics systems (CMS) such 
as Mathematica (Wolfram Inc. 2005) and MATLAB 
(MathWorks 2005) can also be used to build agent models, 
although no dedicated agent facilities are currently pro-
vided by these systems. CMS tend to offer better mathe-
matical modeling libraries, visualization, statistical analy-
sis, and database routines than conventional spreadsheets. 
However, these environments are harder to learn for those 
not already familiar with them. Desktop ABMS systems 
are generally limited to handle agents that number in the 
range of dozens to hundreds. 

4.2.2 Large-scale ABMS 

Large-scale ABMS extends agent modeling beyond simple 
desktop environments and allows thousands to millions of 
agents to engage in sophisticated interchanges. Large-scale 
agent modeling is usually done with computer-based agent 
simulation environments. These environments support sev-
eral features specific to agent modeling including the 
availability of a time scheduler, the availability of commu-
nications mechanisms, the availability of flexible interac-
tion topologies, a range of architectural choices, facilities 
for storing and displaying agent states, large-scale devel-
opment support and in some cases special topic support. 
Large-scale agent models can be built and run on desktop 
computers in addition to higher-performance computing 
systems. However, large-scale agent models generally re-
quire more advanced skills and more development re-
sources than desktop environments. Several standards for 
agent software have influenced agent-based toolkit devel-
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opment including the Foundation for Intelligent Physical 
Agents’ (FIPA 2005) architecture specifications, the Ob-
ject Management Group Agent Platform Special Interest 
Group, Agent UML (OMG 2005), and the Knowledge-able 
Agent-oriented System architecture (KAoS) (Bradshaw 
1997). 

Thanks to substantial public research and development 
investments, many ABMS software environments are now 
freely available. These include Repast, Swarm, NetLogo 
and MASON, among others. Proprietary toolkits are also 
available. A recent review and comparison of Java-based 
agent modeling toolkits is by Tobias and Hoffman (2004). 

The REcursive Porous Agent Simulation Toolkit (Re-
past) is the leading free and open source large-scale agent-
based modeling and simulation library. Repast seeks to 
support the development of extremely flexible models of 
agents with an emphasis on social interactions. Users build 
simulations by incorporating Repast library components 
into their own programs or by using the visual Repast for 
Python Scripting environment (Collier, Howe et al. 2003). 
More information on Repast, as well as free downloads, 
can be found at the Repast home page (Repast 2005). Re-
past is maintained by the Repast Organization for Architec-
ture and Design (ROAD). According to ROAD: 

 
Our goal with Repast is to move beyond the rep-
resentation of agents as discrete, self-contained 
entities in favor of a view of social actors as 
permeable, interleaved and mutually defining, 
with cascading and recombinant motives. We in-
tend to support the modeling of belief systems, 
agents, organizations, and institutions as recur-
sive social constructions. The fuller goal of the 
toolkit is to allow situated histories to be re-
played with altered assumptions. To achieve this 
goal, it will be necessary for Repast to provide a 
feast of advanced features, and it is toward that 
objective that we work. (Repast 2005) 
 

Repast has been used extensively in social simulation ap-
plications (North and Macal 2005). There are three produc-
tion versions of Repast, namely Repast for Python (Repast 
Py), Repast for Java (Repast J) and Repast for the Micro-
soft .NET framework (Repast .NET).   

Repast Py is a cross-platform visual model construc-
tion system that allows users to build models using a 
graphical user interface and write agent behaviors using 
Python scripting. All of the features of the Repast system 
are available in Repast Py, but Repast Py is designed for 
rapid development of prototype agent models. Repast Py 
models can be automatically exported to Repast J for large-
scale model development. 

Repast J is a pure Java modeling environment to sup-
port the development of large-scale agent models. It in-
cludes a variety of features such as a fully concurrent dis-
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crete event scheduler, a model visualization environment, 
integration with geographical information systems for 
modeling agents on real maps, and adaptive behavioral 
tools such as neural networks and genetic algorithms. The 
Repast J interface running an implementation of a basic 
social network model is shown in Figure 7. The lines in the 
lower display window indicate ongoing interactions be-
tween connected agents. Agents form and maintain ties 
over time based on the payoffs they receive from interac-
tions along the links. 

 

 
Figure 7: The Repast J “Jain” Network Model 

 
Repast .NET is a pure C# modeling environment that 

brings all of the features of Repast J to the Microsoft .NET 
framework. Repast .NET models can be written in any lan-
guage supported by the Microsoft .NET framework such as 
Managed C++, C#, Visual Basic or even Managed Lisp or 
Managed Prolog10.1. 

Repast has a sophisticated scheduler that can do both 
time step and discrete event simulation as well as maintain 
both global and local views of time. Repast allows a wide 
range of communications mechanisms to be used with all 
of the major interaction topologies. Repast includes a full 
set of tools for storing and displaying agent states and 
works well with several large-scale development environ-
ments. Repast also includes tools for automated integration 
with both commercial and free open source Geographical 
Information Systems (GIS) using both Lagrangian and Eul-
erian representations. The commercial GIS integration in-
cludes automated connectivity to the widely used ESRI 
ArcGIS geographical information system. Furthermore, 
since Repast is based on the Java language, the Microsoft 
.NET framework and Python scripting, it is fully object-
oriented. 

Swarm was the first ABMS software development en-
vironment launched in 1994 by Chris Langton at the Santa 
Fe Institute. Swarm is a free and open source software li-
brary (Minar, Burkhart et al. 1996) and is currently main-
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tained by the Swarm Development Group (SDG). Swarm 
seeks to create a shared simulation platform for ABMS and 
to facilitate the development of a wide range of models. 
Users build simulations by incorporating Swarm library 
components into their programs. More information on 
Swarm, and free downloads, can be found at the SDG 
home page (SDG 2005). From the Swarm developers: 

 
Swarm is a set of libraries that facilitate imple-
mentation of agent-based models. Swarm’s inspi-
ration comes from the field of Artificial Life. Ar-
tificial Life is an approach to studying biological 
systems that attempts to infer mechanism from 
biological phenomena, using the elaboration, re-
finement, and generalization of these mechanisms 
to identify unifying dynamical properties of bio-
logical systems… Chris Langton initiated the 
Swarm project in 1994 at the Santa Fe Institute. 
The first version was available by 1996, and since 
then it has evolved to serve not only researchers 
in biology, but also anthropology, computer sci-
ence, defense, ecology, economics, geography, 
industry, and political science. 
 

The Swarm simulation system has two fundamental com-
ponents. The core component runs general-purpose simula-
tion code written in Objective-C, Tcl/Tk, and Java. This 
component handles most of the “behind the scenes” details. 
The external wrapper components run user-specific simula-
tion code written in either Objective-C or Java. These 
components handle most of the “center stage” work. The 
Swarm interface uses probes to display and edit the proper-
ties of agents. Probes are normally activated by clicking on 
an agent in one of the display windows. 

Unlike Repast, the Swarm scheduler only supports 
time step scheduling, but it does so at a high level of reso-
lution. The Swarm scheduler can maintain global and local 
time schedules. Swarm supports a full set of communica-
tions mechanisms and can model all of the major interac-
tion topologies. Swarm includes a good set of tools for 
storing and displaying agent states. Since Swarm is based 
on a combination of Java and Objective-C, it is object-
oriented. However, this mixture of languages causes 
Swarm to have difficulties with integration into some of 
the large-scale development environments, such as Eclipse. 
Swarm has support for GIS through the Kenge library.  

NetLogo is another cross-platform multi-agent pro-
grammable modeling environment that has extensive use 
and support (NetLogo 2005). Originally based on the Star-
Logo system, NetLogo accommodates agent systems hav-
ing a combination of live and software agent participants. 

Proprietary toolkits are also commonly used for agent 
modeling. These toolkits have the advantage of being cus-
tom designed for specific uses. They also can be modified 
without concern for maintaining synchronization with the 
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public version of the toolkit. However, developing and 
maintaining such a toolkit can require substantial resources 
and a long-term organizational commitment. Furthermore, 
such toolkits lack the community or commercial support 
often found with publicly available toolkits such as online  
and in-person help, code sharing, and targeted conferences 
and user meetings. The lack of experienced developers is 
also an issue faced with proprietary toolkits. 

4.3 The ABMS Modeling Lifecycle 

Developing an agent-based simulation is part of the more 
general software and model development process. The de-
velopment timeline typically has several highly interleaved 
stages. The concept development and articulation stage de-
fines the project goals. The requirements definition stage 
makes the goals specific. The design stage defines the 
model structure and function. The implementation stage 
builds model using the design. The operationalization stage 
puts the model into use. In practice, successful ABMS pro-
jects typically iterate over these stages several times with 
more detailed models resulting from each iteration. Suc-
cessful projects also begin small using one or more of the 
desktop ABMS tools and then grow into the larger-scale 
ABMS toolkits in stages. 

5 ABMS AND TRADITIONAL M&S 
TECHNIQUES 

Agent-based modeling can either provide an overarching 
framework for model components based on other modeling 
techniques, or it can provide agent models that are embed-
ded into larger systems. All of the modeling approaches 
currently in use were originally developed to address spe-
cific types of problems, for example, optimization for find-
ing the best solution, discrete-event simulation for under-
standing the effects of uncertainty in a process, and 
Systems Dynamics for understanding system interconnect-
edness. Using agent-based models in combination with 
other techniques is an approach that we call “model blend-
ing.” Here are some examples of situations where it might 
be desirable to combine ABMS with other modeling tech-
niques.  

Systems Dynamics (SD) is extremely useful for identi-
fying the important variables and causal linkages in a sys-
tem and for structuring many aspects of model develop-
ment. Many ABMS modeling projects can benefit greatly 
by beginning with a systematic identification and analysis 
of the important variables in the system and their causal 
relationships as in SD.  

Discrete event simulation (DES) offers methods for 
taking a process view of the system and for dealing with 
stochastic uncertainty. To the extent that agents are en-
gaged in processes and move through a system, DES tech-
niques can be useful in developing an agent-based model. 
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Often, it is not realistic to develop a comprehensive 
agent model in which all the causal factors and relation-
ships leading to an agent’s decisions can be fully specified. 
The alternative is to use statistical estimation techniques 
for estimating agent decision rules. These are essentially 
simple models relating situations the agents find them-
selves in to their actions. It is also possible to go from 
complex agent models to simpler statistical relationships 
by identifying the key variables that govern most of the 
agent behaviors. Sophisticated statistical techniques such 
as principal component analysis can be used for this pur-
pose.  

In traditional risk analysis, there is little apparent con-
nection to agent-based modeling. However, sometimes risk 
can be considered an emergent property of a system as a 
whole. A comprehensive, system-wide assessment of the 
causal factors that lead to risk throughout the system can 
be addressed. Agent modeling is a natural approach to rep-
resenting the diverse characteristics and decision making 
behaviors of companies or individuals that comprise the 
system or industry. For example, Insurance World is an 
agent-based risk assessment model of the reinsurance in-
dustry (MacKenzie 2002). 

Optimization techniques are used to model optimal 
(normative) individual and organizational decision making. 
Agent-based modeling can be used in conjunction with 
agents that optimize on an individual basis or, as described 
above, agent-based models can be the basis for swarm op-
timization techniques in which individual agent actions 
lead to near-optimal system states. 

In summary, agent modeling represents a new frontier 
in creatively combining novel and traditional modeling ap-
proaches in ways that have not been previously possible. 

6 ABMS RESOURCES 

Many resources are available for learning more about 
ABMS and several ABMS communities support develop-
ment of toolkits and applications. NAACSOS, the North 
American Association for Computational Social and Or-
ganizational Science, is a recently formed national profes-
sional organization devoted to furthering computational 
social sciences and ABMS 
<http://www.naacsos.org>. Annual conferences 
include the NAACSOS conference 
<http://www.casos.cs.cmu.edu/> that covers 
social and organizational computation of all kinds, the 
Agent 200X conferences 
<http://www.agent2005.anl.gov> that focus on 
agent modeling in the social sciences and include tracks on 
toolkits, computational social theory, and applications, 
SwarmFest <http://www.sdg.org> that is concerned 
with all aspects of agent-based modeling, especially 
Swarm-based applications, and the Lake Arrowhead Con-
ference 
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<http://www.hcs.ucla.edu/arrowhead.htm> 
that focuses on social theory and modeling of human com-
plex systems. Other major conferences have ABMS-related 
tacks or sponsor specialty conferences including the IEEE, 
INFORMS, and various simulation conferences (WSC, 
SCSC, Multi-Conferences), for example, the 2005 IEEE 
Swarm Intelligence Symposium 
<http://www.ieeeswarm.org>. Various organiza-
tions are devoted to advancing complexity sciences such as 
the Santa Fe Institute <http://www.santafe.edu> 
and the Center for the Study of Complex Systems (CSCS) 
at the University of Michigan  
<http://www.cscs.umich.edu>. Some organiza-
tions are devoted to furthering ABMS in theory, applica-
tions, methods and/or education such as Argonne’s Center 
for Complex Adaptive Agent Systems Simulation 
<http://www.cas.anl.gov>, the Center for Com-
putational Analysis of Social and Organizational Systems 
(CASOS) at Carnegie Mellon 
<http://www.casos.cs.cmu.edu/> and the Cen-
ter for Social Complexity 
<http://socialcomplexity.gmu.edu/> at 
George Mason. 

7 WHY AND WHEN ABMS 

The scope of ABMS continues to expand well beyond its 
origins in biological systems. ABMS has found application 
in solving practical problems and advancing research 
agendas. Why do we do agent-based modeling?  The agent 
representation allows us to ask questions such as “what is 
the effect of agent diversity on the evolution of the sys-
tem?”, “do certain types of agents dominate?”, and “does 
the system evolve toward a stable mix of agent types?” 
Agent simulation can be used to study how patterns and 
organizations emerge and to discover how system-level 
structures form that are not apparent from the behaviors of 
individual agents. 

Situations for which agent-based modeling can offer 
distinct advantages to traditional modeling approaches, re-
veal new insights, and answer long-standing questions are 
becoming better understood every day. When is it benefi-
cial to think in terms of agents?  

 
• When there is a natural representation as agents 
• When there are decisions and behaviors that can 

be defined discretely (with boundaries) 
• When it is important that agents adapt and change 

their behaviors 
• When it is important that agents learn and engage 

in dynamic strategic behaviors 
• When it is important that agents have a dynamic 

relationships with other agents, and agent rela-
tionships form and dissolve 

http://www.naacsos.org/
http://www.casos.cs.cmu.edu/
http://www.agent2005.anl.gov/
http://www.sdg.org/
http://www.hcs.ucla.edu/arrowhead.htm
http://www.ieeeswarm.org/
http://www.santafe.edu/
http://www.cscs.umich.edu/
http://www.cas.anl.gov/
http://www.casos.cs.cmu.edu/
http://socialcomplexity.gmu.edu/
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• When it is important that agents form organiza-
tions, and adaptation and learning are important at 
the organization level 

• When it is important that agents have a spatial 
component to their behaviors and interactions 

• When the past is no predictor of the future 
• When scaling-up to arbitrary levels is important 
• When process structural change needs to be a re-

sult of the model, rather than a model input.  
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