두 집단간의 비교, 혹은 모집단의 parameter와 실험처치(treatment)를 준 집단을 비교할 때 우리는 가설검증의 절차를 밟았다
t-test. 이와는 다른 의미로 실험처치를 준 집단의 모집단 parameter를 추정할 경우가 있는데 이를 추정 혹은 Estimation이라고 한다.
추정 혹은 Estimation에는 두 가지 방법이 있다. 첫 번째 방법은 point estimation이라고 한다. 이는 정확한 값을 모집단의
로 추정하는 경우이나 이것이 정확한 경우는 드물다. 두 번째 방법은 interval estimation이라고 하는데, 20권의 책의 무게의 평균으로 전체 모집단의 책의 무게가 어느 범위에 있다라고 추정하는 경우이다.
-> 추청 (estimation)될 값, unknown
-> 얻어진 값 (observed value)
-> unknown till determination
-> 계산가능
Point estimation을 위해서 우리는 z, t = 0 의 값을 이용하여 population의
값을 추정할 수 있다. 이렇게 얻는 값은 sample의 평균값,
가 된다. z, t = 0 의 값을 사용하는 까닭은 z-distribution 혹은 t-distribtuion에서 중앙 값 (즉, 평균)에 해당하는 값이 0 이기 때문이다. Interval estimation을 위해서는, z, t 값을 연구자가 정하게 된다. 이렇게 정해지는 구간을
ConfidenceLevel 이라고 하며, 이 구간을
ConfidenceInterval 혹은
ConfidenceInterval CL이라고 한다. 예를 들면, CL을 95%로 한다면, z = 2 가 될 터이고, t 값은 95% 의 확신을 뒤집은 5% 의 오류가능성과 df (n-1) 값에 해당하는 t-distribution table의 값 (
) 이라고 하겠다. 즉, t값은 sample size와 (df) CL에 따라서 변하게 되며, z값은 CL에 따라서 변하게 된다. 예를 또 들자면, 위에서 CL을 99%로 하게되면, z값은 3 이 될것이다. t값의 경우,
와 df(n-1)의 값에 해당하는 값을 갖게 된다.