| Factor B: Temperature | ||||
| Factor A: Humidity | 24 | 29 | 34 | |
| 30% | n=15 24도 30% | n=15 29도 30% | n=15 34도 30% | |
| 70% | n=15 24도 70% | n=15 29도 70% | n=15 34도 70% | |
![$F = \frac{\text{variance (differences) between sample means}}{\text{variance (difference) expected by chance}} \cdots [1]$ $F = \frac{\text{variance (differences) between sample means}}{\text{variance (difference) expected by chance}} \cdots [1]$](/_cache/latex/a/ab/08f5016a69001c135a62fea0ffef3060.png)
| Factor B: Temperature | |||||
| Factor A: Humidity | 24 | 29 | 34 | ||
| 30% | | | | | |
| 70% | | | | | |
| | | |||




혹은
혹은
혹은



| Factorial ANOVA | |||||
| Factor B: Temperature | |||||
| Factor A: Humidity | 24 | 29 | 34 | ||
| 30% | | | | | |
| 70% | | | | | |
| | | |||

| Examining Interaction Effect | |
![]() Figure 1. Case 1 [JPG image (32.27 KB)] | ![]() Figure 2. Case 2 [JPG image (29.96 KB)] |
| Main effect for factor A but no main effect for factor B | ||||
| B1 | B2 | |||
| A1 | 20 | 20 | MA1 = 20 | 10-point difference |
| A2 | 10 | 10 | MA2 = 10 | |
| MB1 = 15 | MB2 = 15 | |||
| No difference | ||||
| Main effect for both factor A and factor B | ||||
| B1 | B2 | |||
| A1 | 10 | 30 | MA1 = 20 | 10-point difference |
| A2 | 20 | 40 | MA2 = 30 | |
| MB1 = 15 | MB2 = 35 | |||
| 20-point difference | ||||
| No main effect for either factor A and factor B | ||||
| B1 | B2 | |||
| A1 | 10 | 20 | MA1 = 15 | no difference |
| A2 | 20 | 10 | MA2 = 15 | |
| MB1 = 15 | MB2 = 15 | |||
| - - - - no difference - - - - | ||||


| Factor B | ||||||
| Factor A | | | | | ||
| 3 | 2 | 9 | | ||
| 1 | 5 | 9 | ||||
| 1 | 9 | 13 | ||||
| 6 | 7 | 6 | ||||
| 4 | 7 | 8 | ||||
| T=15 | T=30 | T=45 | ||||
| SS=18 | SS=28 | SS=26 | ||||
| 0 | 3 | 0 | | ||
| 2 | 8 | 0 | ||||
| 0 | 3 | 0 | ||||
| 0 | 3 | 5 | ||||
| 3 | 3 | 0 | ||||
| T=5 | T=20 | T=5 | ||||
| SS=8 | SS=20 | SS=20 | ||||
| | | ||||













F distribution table(http://commres.net/wiki/_media/ftable.pdf) 


| Factor B: Temperature | |||||
| Factor A | B1 | B2 | B3 | ||
| A1 | n=10 T=0 SS=30 | n=10 T=10 SS=40 | n=10 T=20 SS=50 | ||
| A2 | n=10 T=40 SS=60 | n=10 T=30 SS=50 | n=10 T=20 SS=40 | ||
| Weight | Fullness | nCookies |
| 1 | 1 | 15 |
| 1 | 1 | 17 |
| 1 | 1 | 32 |
| 1 | 1 | 12 |
| 1 | 1 | 34 |
| 1 | 1 | 27 |
| 1 | 1 | 13 |
| 1 | 1 | 24 |
| 1 | 1 | 41 |
| 1 | 1 | 20 |
| 1 | 1 | 23 |
| 1 | 1 | 25 |
| 1 | 1 | 9 |
| 1 | 1 | 21 |
| 1 | 1 | 22 |
| 1 | 1 | 26 |
| 1 | 1 | 26 |
| 1 | 1 | 28 |
| 1 | 1 | 22 |
| 1 | 1 | 3 |
| 1 | 2 | 22 |
| 1 | 2 | 7 |
| 1 | 2 | 15 |
| 1 | 2 | 6 |
| 1 | 2 | 8 |
| 1 | 2 | 18 |
| 1 | 2 | 24 |
| 1 | 2 | 19 |
| 1 | 2 | 11 |
| 1 | 2 | 9 |
| 1 | 2 | 24 |
| 1 | 2 | 19 |
| 1 | 2 | 9 |
| 1 | 2 | 19 |
| 1 | 2 | 29 |
| 1 | 2 | 9 |
| 1 | 2 | 18 |
| 1 | 2 | 17 |
| 1 | 2 | 3 |
| 1 | 2 | 14 |
| 2 | 1 | 7 |
| 2 | 1 | 19 |
| 2 | 1 | 8 |
| 2 | 1 | 23 |
| 2 | 1 | 6 |
| 2 | 1 | 11 |
| 2 | 1 | 18 |
| 2 | 1 | 23 |
| 2 | 1 | 22 |
| 2 | 1 | 16 |
| 2 | 1 | 28 |
| 2 | 1 | 19 |
| 2 | 1 | 2 |
| 2 | 1 | 27 |
| 2 | 1 | 20 |
| 2 | 1 | 25 |
| 2 | 1 | 23 |
| 2 | 1 | 10 |
| 2 | 1 | 19 |
| 2 | 1 | 14 |
| 2 | 2 | 14 |
| 2 | 2 | 21 |
| 2 | 2 | 16 |
| 2 | 2 | 14 |
| 2 | 2 | 17 |
| 2 | 2 | 20 |
| 2 | 2 | 20 |
| 2 | 2 | 21 |
| 2 | 2 | 32 |
| 2 | 2 | 26 |
| 2 | 2 | 9 |
| 2 | 2 | 14 |
| 2 | 2 | 16 |
| 2 | 2 | 15 |
| 2 | 2 | 6 |
| 2 | 2 | 5 |
| 2 | 2 | 12 |
| 2 | 2 | 23 |
| 2 | 2 | 27 |
| 2 | 2 | 32 |
| Factor B: Fullness | |||||
| Factor A: Weight | Empty | Full | |||
| Normal | n=20 T=440 SS=1502 | n=20 =15 T=300 SS=940 | | ||
| Obese | n=20 = 17 T=340 SS=1062 | n=20 = 18T=360 SS=1084 | | ||
| | G=1440 N=80 | |||



















| Result | ||||
| Source | SS | df | MS | F |
| Between treatment | ||||
| Factor A (weight) | ||||
| Factor B (fullness) | ||||
| A x B interaction | ||||
| Within treatment | ||||
| Total | ||||
| weigth x fullness factorial design | ||||
The means and standard deviations are presented in Table 1. The two-factor analysis of variance showed no significant main effect for the weight factor, F(x,xx)=xxx, p>.05; and no significant main effect for the fullness factor, F(x,xx)=xxx, p>.05; but the interaction between weight and fullness was significant, F(x,xx)=xxx, p<.05.
| Table 1 Mean number of crackers eaten in each treatment condition | |||
| Fullness | |||
| Weight | Empty stomach | Full stomach | |
| Normal | M=22 SD=9.00 | M=15 SD=8.18 | |
| Obese | M=17 SD=8.34 | M=18 SD=8.16 | |

| Influence of urine chemicals to other male & female rats | ||||
| Factor B: Amount of chemical | ||||
| Factor A: gender | None | Small | Large | |
| Male | n=5 T=10 SS=15 | n=5 T=20 SS=19 | n=5 T=30 SS=31 | |
| Female | n=5 T=10 SS=15 | n=5 T=20 SS=19 | n=5 T=30 SS=31 | |
| ||||