Level of variables, 측정수준


1. Level of Variables - 한국어

Variable의 종류에는 4 가지가 있다. Variable에 대해서 이야기 하기 전에 특성(attributes)에 대한 설명을 먼저 하겠다. 특성이란 변수가 가지는 변인의 범위를 의미한다고 가정한다. 가령 성별이라는 변수는 남자여자라는 범위의 범주를 갖는다. 수학시험의 attributes는 0점에서 100점까지의 점수범위라는 범주를 갖는다.
  1. N. (Nominal variable):
    • 특성(attributes)에 따라서 변인들을 구분할 수 있는 변수를 의미한다. 특성은 수(number)나 양(volume)의 가치와는 상관이 없다. 성별의 attributes는 남성여성으로 구분되며, 이 두 attributes에는 수적 가치가 내재되어 있지 않다. 설령, 연구자가 자의적으로
      • 남성 -> 0
      • 여성 -> 1 이라는 번호를 부여했다고 하더라도, 이 번호는 가치를 나타내기 위한 것이 아니라, 단순히 두 attributes를 구분하기 위한 편의상의 장치일 뿐이다. 따라서 Nominal 변수를 가지고 더하기, 빼기 등의 사칙연산을 시도하는 것은 무의미하다.
  2. O. (Ordinal variable):
    • 3개 이상의 변인을 가지며, 이 변인들이 순서를 가질 때, 이것을 ordinal variable이라고 한다. 가령, 마라톤 주자의 등수를 1등, 2등, 3등, 4등, 5등으로 나누는 것은 1-5등까지의 순서에 의미를 둔 변인의 구분이다. 주의할 점은 각 등간의 가치는 일정하지 않다는 것을 전제로 한다. 즉, ordinal variable을 만족하기 위해서 1등과 2등의 간격이 2등과 3등의 간격과 같아야 할 필요는 없다.
  3. I (Interval variable):
    • Interval variable이라함은 위의 ordinal variable의 성격을 가지고 있으면서, 각 등간의 가치가 일정한 변수를 의미한다. 보통, 시험의 점수는 각 점수간의 차이가 일정함을 가정하고 0에서 100까지의 점수를 부여한다. 따라서, 시험점수에는 순서와 일정한 가치의 등간이라는 의미가 포함되어 있다. 또 다른 예를 들자면, 온도계의 온도가 그렇다. 10도와 5도의 차이는 40도 35도의 차이와 동일하다.
    • 아래는 장기기증에 관한 동기를 재는 척도(measurement)의 예이다.
    • 장기기증에 관한 동기(intention)를 측정하기 위해서 3개의 질문을 하고 7개의 선택을 요구하였다 (7점척도). M과 SD는 각각 Mean(산술평균)과 Standard Deviation(표준편차)을 의미한다.

    • Intent to Donate (for those who have not yet signed a card): 
      M = 4.69, SD = 1.22, alpha = .89 
      
      1 = Not at all 
      7 = Absolutely true
      
      I have considered the possibility of        1__2__3__4__5__6__7
      becoming an organ donor.
      I have been meaning to sign an organ        1__2__3__4__5__6__7
      donor card.
      I do not intend to sign an organ            1__2__3__4__5__6__7
      donor card.
      At some time in the future, I plan to       1__2__3__4__5__6__7
      sign an organ donor card.
      
    • 여기서 생각해 봐야 할 점은 위의 문항이 interval의 예로 쓰여졌다는 사실이다. Interval 변수의 가장 큰 특징은 각 등간의 거리가 일정하다는 것인데, 1에서 7까지의 ("전혀 그렇지 않다"에서 "분명히 그렇다") 7구간이 일정하다는 것에 의문의 여지가 있기 때문이다.
    • 위의 문항은 응답자의 의도를 묻는 질문을 하고, 그 의미를 측정하는 것인데, 이는 Osgood에 의해서 개발된 오래된 관행이다. Osgood은 의미를 분별하기 위해서 위와 같은 척도를 개발 사용하고 이 방법의 타당성에 대해서 심도깊은 연구를 하였는데, 그의 연구는 대체로 reliability와 validity가 높은 것으로 인정되고 있다. 좀 더 구체적으로 말하면, Osgood은 이런 종류의 데이터를 수집하고 이를 Factor analysis와 MDS 기법으로 그래프화하여 각 등간의 정도(거리)가 유사함을 설득하였다. 이 방법을 Semantic Differential Measurement라고 한다. 따라서 이와 같은 방법의 문항은 interval 변수를 다루는 것으로 취급한다.
    • 의미를 묻는 질문은 위와 같이 7점 척도일 수도, 10점 척도이거나 5점 척도일 수도 있는데, 일반적으로 그 등간의 수가 4개를 넘으면 (5점척도 이상), 그 변수를 interval한 것으로 인정한다.
  4. R. (Ratio variable)
    • Ratio variable은 위의 interval variable의 성격을 물려받으며, 이에 더하여, 이런 종류의 변수가 갖는 0은 참된 0의 의미(무, 없음, nothing-ness)를 갖는다. 주머니 속의 현금에서 현금=0이 의미하는 것은 현금이 없음을 의미하므로 ration variable이라고 할 수 있다. 그러나, 위의 예에서 온도계에 있어서의 0은 온도가 없음을 의미하지는 않으므로 온도는 interval variable이지 ratio variable이 아니라고 하겠다.
  5. NOIR
    • 위와 같은 변수의 종류는 흔히 앞의 머릿글자를 따서 NOIR로 외우기도 한다. 어떤 변수를 어떤 종류로 수집, 기록할 것인가?는 (conventional한 경우를 제외하고는) 연구자의 판단에 좌우된다. 그렇지만, 높은 차원의 변수는 낮은 차원의 변수(R에서 N)로 변환이 가능하다는 것을 염두에 두도록 한다. 가령, 몸무게와 CA(Communication Apprehension)에 관심을 가진 연구자가 연구 샘플에서 몸무게(Kg)를 구했다고 가정을 하면, 연구자는 몸무게 데이터를 낮은 수준의 Ordinal 변수로 변화시켜 사용할 수 있다 (비만/보통/마름의 세가지 유형의 체격). 그러나, 반대의 경우는 불가능하다. 즉, 처음 개인 데이터를 기록할 때 비만/보통/마름 세가지의 유형으로 기록했다면, 이 기록을 바탕으로 Interval 혹은 ratio 변수를 얻어내는 것은 불가능하다.

2. 쌍대비교 척도

  • 사물,대상,사건 등을 쌍으로 (dyad) 비교하여 우위를 측정하는 것으로 Nominal한 방법과 interval한 방법이 있을 수 있다.

문항: 아래는 다섯개의 User Interface 디자인을 쌍으로 모아 놓은 
것입니다. 각각을 비교하여 더 나은 디자인에는 1을 표시해 주세요.

UI-a (      ) :: UI-b  (      )
UI-a (      ) :: UI-c  (      )
UI-a (      ) :: UI-d  (      )
UI-a (      ) :: UI-e  (      )
UI-b (      ) :: UI-c  (      )
UI-b (      ) :: UI-d  (      )
UI-b (      ) :: UI-e  (      )
UI-c (      ) :: UI-d  (      )
UI-c (      ) :: UI-e  (      )
UI-d (      ) :: UI-e  (      )
이렇게 해서 얻은 데이터는 아래와 같은 값으로 정리될 수 있다. 이 때, 데이터의 추이성(integrity)을 살펴 본 후에 각 행의 값을 더한 값으로 UI에 순서를 메길 수 있다.
UserInterface a b c d e
a 0 0 1 0
b 1 0 1 0
c 1 1 1 1
d 0 0 0 0
e 1 1 0 1
.. 3 2 0 4 1


위의 데이터 순서로 보면 D, A, B, E, C의 순서로 UI가 평가되었음을 알 수 있고, 이에 해당하는 점수를 연구자는 부여할 수 있다.

아래의 단어는 성격을 나타내는데 쓰이는 형용사의 군집이다 (n=162). 이 단어를 쌍으로 주어서 의미가 서로 가까운 순서대로 5-0으로 점수를 메기라고 응답자에게 요구한다면 각 형용사 간의 거리를 (감정적인) 측정하는 방법이 될 것이다. 이와 같은 방법의 측정은 후에 이야기 될 MDS 분석에 자주 사용된다.

침착한, (위기상황에도)안정적인, 차분한, (매사에)철저한, 보수적인, 완벽주의적인, 사리분별력이 뛰어난, 분별력 있는, 현실 감각 있는, 실제적인, 조직적인, 정리 조직화하는, 체계적인, 계획적인, 사실적인, 수다스러운, 이야기를 좋아하는, 구체적인, 경험을 통한, 비사교적인, 과거의 경험을 통해 문제를 해결, 실생활을 즐김, 현실적인, 실질적인, 실용적인, 기억력이 뛰어난, 기억력이 좋은, 상식이 풍부한, 판단력이 있는, 양심이 바른, 철저히 준비하는, 차분히 방관하는, 단호한, 결정력있는, (반복적이고 일상적인일에)인내심이 강한, 인내력이 강한, 사교적인, 관계지향적인, 인내심이 많은, 인내심이 있는, 친근한, 다정한, 친절한, 배려하는, (타인의 감정에)민감한, 참을성 있는, 결단력 있는, 독단적인, 말없는, 조용한, (자신과타인의 감정을)배려하지 않는, 타인의 감정을 고려하지 못하는, 책임감 있는, 책임감이 강한, 충실한, 이해심이 많은, 관대한, 관용적인, 수용적인, 성실한, 추진력 있는, 목가적인, 낭만적인, 지적 호기심이 많은, 관심분야에 대해 말을 잘하는, 박식한, 감각적인, 자기안의 갈등이 많고 복잡한, 내적으로 풍부한, (목적달성을 위해)정진하는, 능력을 중시하는, 온정적인, 의지가 굳은, 내적 독립심이 강한, 신념이 확고한, 내적신념이 강한, 정열적인 신념을 지닌, 맹신하는, 내적신념이 깊은, 온화한, 영향력 있는, 지도력 있는, 언변이 강한, 통솔력 있는, 따뜻한, 동정적인, 화합을 추구하는, (자신의 의견을)강요하지 않는, 충돌을 피하는, 집중력이 강한, 한곳에 몰두하는, 의사가 불명확한, 결정력이 부족한, 인화를 중시하는, 타협적인, 공감하는, 동정심이 많은, 동료애가 깊은, 창의적인, 독창적인, 창의력이 풍부한, 객관적인, 객관적으로 비평하는, 절제된 호기심으로 인생을 관찰하는, 상상력이 풍부한, 직관력이 뛰어난, 직관력이 강한, 비현실적인, (자신의 열정이나)에너지를 절약하는, 추진력이 부족한, 현실보다 이론에 더 밝은, 통찰력이 뛰어난, 비판분석력이 뛰어난, 열정적인, (감정에 지나치게)민감한, 마음이 약한, 적응력이 강한, 정응력이 뛰어난, 순발력이 뛰어난, 민첩한, 논리적인, 빠릿빠릿한, 변화를 즐기는, (새로운일에)도전적인, 안목이 넓은, 미래지향적인, 한 가지 일을 끝내기 전에 다른 일을 벌이는, 사무적인, 반복적인 일을 참지 못하는, 일상적인 일을 경시하는, 솔직한, 개방적인, 융통성 있는, 이해가 빠른, (도구를 다루는)능력 있는, 연장을 잘 다루는, (다른사람에 대해)기민한, 가벼운, 경솔한, 추상적인, 신중치 못한, 상황을 파악하는 민감성을 지닌, 의존적인, 겸손한, 열성적인, 활동적인, 낙천적인, 능동적인, 적극적인, 다방면에 관심과 재능이 많은, 호기심이 많은, 경쟁적인, 내면반응을 공유하기 어려운, 감정표현을 어려워하는, 과묵한, 낯가리는, 헌신적인, 분석적인, 통찰하는, 다른사람에게 관심을 쏟는, 정열적인, 신중한

위의 글을 읽으면서 독자가 느꼈듯이 쌍대비교법의 단점은 (1) 비교할 항목 수가 많아지면, 쌍으로 비교한 문항이 더 많아진다는 점이다
`# = (n(n-1))/2`
In this case, 문항수 `# = (162(162-1))/2`
(2)

3. Lickert

특정 대상에 대한 여러 가지 의견 진술문을 응답자들에게 제시하고, 각 진술문들에 대한 동의 정도를 척도상 번호에 표시하도록 한 것
See, http://upload.wikimedia.org/wikipedia/commons/c/cc/Example_Likert_Scale.svg
SA, http://www.socialresearchmethods.net/kb/scallik.php


4. Semantic Differential

척도 양 끝에 서로 대칭적/반대 의미를 갖고 있는 두 개의 형용사를 놓고 그 사이를 일정 간격으로 번호에 따라 나눈 것

5. Level of measurement - English

Measurement is the process of assigning numbers to objects in such a way that properties of the objects are reflected in the numbers themselves. There are four different measures.
  • NOMINAL -- Nominal measures have only the characteristics of exhaustivenss and exclusiveness. Examples include gender, religions, affiliation, political party affiliation, birthplace, college major, and hair color (Babbie, 1998, p.142).
  • ORDINAL -- Ordinal measures, on the other hand, represent relatively more or less of the variable. Examples might be social class, conservatism, alienation, prejudice, intellectual sophistication, and so on (Babbie, 1998, p.142). Therefore, such measures imply some sort of order. Each category, however, DOES NOT have measurable distance. In other words, we can arrange the attributes in order. But, we cannot assume that one is twice much as former.
  • INTERVAL -- Interval measures, as you guess, provides the distances among attributes. The distances are meaningful, which means the distance between the attributes can be expressed and understood as the unit of the attributes.
  • RATIO -- Ratio measures have the same characteristics as Interval measures do. In addition to that it has a meaningful zero point (or absolute zero), which represent "nothing-ness" of the attribute. Fahrenheit or Celsius scales are interval measures because the zero point does not represent the absence of temperature (no heat). Kelvin temperature scale, on the other hand, is a ratio measure because its zero point really represent the absence of heat (I am not able to imagine what it means (or what the reality is), though :) ).

Why such distinctions? That is because "certain quantitative analysis techniques require variables that meet certain minimum levels of measurement. To the extent that the variables to be examined in your research project are limited to a particular level of measurement -- say, ordinal -- you should plan your analytical techniques accordingly" (Babbie, 1998, p.143). One interesting point is that "in moving sequentially from nominal to ratio level data, the measurement scale contains the same information as the previous scale(s) while simultaneously adding a new piece of information (Weiss & Leets, 1998, p.18).

Here is another point about level of measurement. The difference between Interval and Ratio could be disregarded for this particular course.

Level of MeasurementProperties
NominalIndicates differences among the attributes of the variable
OrdinalIndicates differences among the attributes of the variable
Indicates the direction of the differences (e.g., more than or less than)
IntervalIndicates differences among the attributes of the variable
Indicates the direction of the differences (e.g., more than or less than)
Indicates the amount of difference in equal intervals of the variable
Ratio Indicates differences among the attributes of the variable
Indicates the direction of the differences (e.g., more than or less than)
Indicates the amount of difference in equal intervals of the variable)
Contains an absolute zero

Source: Bartz, A. (1999). Basic statistical concepts. NJ: Prentice-Hall. (p.11)

As you can see, more information is added into the higher level of measurement. We may think that it would be always better if we use the highest level of measurement -- when we measure a variable. However, many variables used in social research are in fact ordinal, or even nominal -- and sometimes interval. The only convenience for the higher level of measurement is that it can go down. That is, you can use interval variable as nominal variable. You cannot do this in the reversed way, however. The main reason for the distinction is that, as mentioned before, it helps us incorporate statistical methods such as chi-square test, t-test, regression analysis, etc.


Retrieved from http://wiki.commres.org//LevelOfVariables
last modified 2014-09-23 12:27:10