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Abstract

This chapter gives a state-of-the art overview of available (free and commer-
cial) software for social network analysis as of fall 2003. It reviews and compares
six programs, illustrating their functionality with example data. Data manipu-
lation options and available support are also discussed. Furthermore, seventeen
other, of which nine special-purpose, software packages and five software rou-
tine packages for general statistical software are reviewed briefly. The chapter
concludes with some recommendations.

1 Introduction

This chapter reviews software for the analysis of social networks. Both commercial
and freely available packages are considered. Based on the software page on the
INSNA website (see the references for the URL), and using the main topics in the
book on network analysis by Wasserman and Faust (1994), which we regard as the
standard text, we selected twenty seven software packages: twenty three stand alone
programs, listed in Table 1, and five utility toolkits given in Table 2.

Software merely aimed at visualization of networks was not admitted to the list,
since this is the topic of chapter 12 of this book (Freeman, 2004). We do review a few
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programs with strong visualization properties. Some were originally developed for
network visualization, and now contain analysis procedures (like NetDraw, Borgatti,
2002). Other programs were specifically developed to integrate network analysis and
visualization (like NetMiner, Cyram, 2003, and visone, Brandes and Wagner, 2003).
Two other programs for network visualization are worth mentioning here, because
some of the reviewed software packages have export functions to these graph drawing
programs, or they are freely distributed together with the social analysis software:
KrackPlot (Krackhardt, Blythe, and McGrath, 1994) and Mage (Richardson, 2001).

The age of the software was not a criterion for selection, although the release
dates of the last versions of the majority of the reviewed software were within the
last two or three years.

Tables 1 and 2 describe the main objective or characteristic of each program. The
data format distinguishes three aspects: 1) type of data the program can handle,
2) input format, and 3) whether there is an option to indicate missing value codes
for network relations. Next, the functionality is described. For each program we
indicate whether the software contains (network) visualization options, for a toolkit
its environment (software package or operating system other than Windows), and
for both groups of software the kind of analyses it can perform. We use the net-
work terminology and categorization of Wasserman & Faust (1994, Parts 3-6) for
the different types of analysis: structural and locational properties, roles and posi-
tions, dyadic and triadic methods, and statistical dyadic interaction models. The
theoretical background of almost all of the obtainable output can be found there as
well. Where necessary, additional references are given. The amount of support is the
final characteristic mentioned in the table, distinguishing availability of the program
(free or commercial, not listing prices), presence and availability of a manual, and
presence of online help during execution of the program.

Section 2 gives an extensive review of six programs (indicated by an asterisk in
Table 1). These programs are either regarded as general and well-known (UCINET,
Pajek, NetMiner) or as having specific features worth mentioning and illustrating
(MultiNet, STRUCTURE, StOCNET). We examine the properties of these packages
with respect to data entry and manipulation, visualization, and social network anal-
ysis. The software is illustrated by applying a selection of routines to an example
data set. A complete reference to a program is given only once, either at the start
of the section in which it is reviewed or—for non-reviewed software—at the first
mention.
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We consider the remaining software to be more specialized and discuss their
objectives and properties to a limited extent in Section 31. In this section we also
review some routines that were developed to perform social network analysis in
general software or on operating systems other than Windows.

The chapter concludes with a section comparing the routines and support offered
by the various programs discussed in Section 2, and some general recommendations.
This section is by no means final, because by definition a chapter like this becomes
outdated with publication.

2 Social network software - a closer look

In this section the programs UCINET, Pajek, NetMiner II, STRUCTURE, MultiNet,
and StOCNET are investigated in more detail with the help of an example data
set. The order in which the packages are presented is based on age, as well as on
generality. We start with three general packages, covering a wide range of analysis
methods. They are presented according to age: UCINET, Pajek, NetMiner II. Next,
the program STRUCTURE is presented. We consider STRUCTURE as a general
program featuring a limited number of methods. Although it has become somewhat
outdated, STRUCTURE has some unique features worth presenting. Finally, two
more specialized packages are presented: MultiNet and StOCNET.

In the presentation we focus on five groups of procedures the software does or
does not possess.

1. Data entry and data manipulation.

2. Visualization techniques.

3. Social network analysis routines, divided into three types of methods:

(a) descriptive methods to calculate (simple) network statistics (e.g., central-
ity or transitivity),

(b) procedure-based analysis based on more complex (iterative) algorithms
(e.g., cluster analysis or eigendecompositions), and

(c) statistical modeling based on probability distributions (e.g., exponential
random graph models or QAP correlation).

The choice of social network analysis routines that were inspected is based on
the categorization of methods given by Wasserman and Faust (1994) explained in

1Except FATCAT
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the introduction, and on the analysis methods presented in earlier chapters in this
book.

• Structure and location: centrality (Everett and Borgatti, 2004) and cohesive
subgroups (cliques).

• Roles and positions: structural equivalence, blockmodeling (Doreian, Batagelj,
and Ferligoj, 2004), eigendecompositions.

• Dyadic and triadic methods.

• Statistical methods: exponential random graph models (Wasserman and Robins,
2004), QAP correlation, statistical analysis of network evolution (Snijders,
2004).

2.1 Example data

The example data used are Freeman’s EIES network (Freeman and Freeman, 1979),
three one-mode networks with two relations on a set of actors (n = 32) that is
frequently used by social network researchers. The data come from a computer con-
ference among social network researchers and were collected as part of a study of the
impact of the Electronic Information Exchange System (EIES). Two relations were
recorded: the number of messages sent and acquaintanceship. The acquaintanceship
relation is longitudinal, measured at two time points, ranging from 0 (did not know
the other) to 4 (close personal friend). For some analysis procedures the data need
to be binary (relation absent or present). The following dichotomization is used for
the acquaintanceship networks: 1 for values larger than 2 (friend, close friend), 0 for
other values (not knowing, not having met, having met). The data set contains two
actor attribute variables: primary disciplinary affiliation (sociology, anthropology,
statistics and mathematics, psychology), and the number of citations (social science
citation index). The complete data set can be found in Wasserman and Faust (1994,
p. 745–748) and is one of the standard data sets distributed with UCINET.

2.2 UCINET

UCINET 6.0 (Version 6.05; Borgatti, Everett, and Freeman, 2002) is a comprehensive
program for the analysis of social networks and other proximity data. It is probably
the best known and most frequently used software package for the analysis of social
network data and contains a large number of network analytic routines. The program
is a commercial product, but a free evaluation version is available, which can be run
for 30 days without registering. The manual consists of two parts: a user’s guide

6



(data management and manipulation) and a reference guide (network analysis). It
also available online through the help function.

UCINET is a menu-driven Windows program, and, as the developers say them-
selves, “is built for speed, not for comfort” (Borgatti, Everett, and Freeman, 1999).
Choosing procedures from the menus usually results in opening a parameter form
where the input for the algorithms is specified. Speedbuttons are available for data
management, export to Pajek and Mage, and launching NetDraw, which three pro-
grams are distributed with UCINET. Two kinds of output are generated: textual
output, saved in log files and displayed on the screen (see Figure 2 for an example),
and data sets that can be used as input for other procedures.

Data entry and manipulation
UCINET is matrix oriented, that is, data sets are collections of one or more matrices.
A single UCINET data set consists of two files: one containing the actual data
(extension ##D) and one containing information about the data (##H). UCINET

data sets can be created by importing data or by entering data directly via the
built-in spreadsheet. The spreadsheet editor, containing the EIES data, is shown
in Figure 1. The import function can process several types of network data: raw
ASCII data, ASCII data saved in DL format, Excel data sets, and data formats from
the programs KrackPlot, NEGOPY, and Pajek.

UCINET provides a large number of data management and transformation tools
like selecting subsets, merging data sets, permuting, transposing, or recoding data.
It has a full-featured matrix algebra language, it can handle two-mode (affiliation)
data as well as derive one-mode data sets from two-mode data. There is an option to
enter attribute data and to specify missing values. It should be noted, however, that
only a few procedures can handle missing values properly. UCINET is distributed
with a large number of example data sets, including Freeman’s EIES data.

Visualization techniques
UCINET contains graphical tools to draw scatterplots, dendrograms, and tree dia-
grams (see Figure 3), which can be saved as bitmap files (BMP). The program itself
does not contain graphical procedures to visualize networks, but it has a speedbutton
to execute the program NetDraw (Borgatti, 2002), which reads UCINET files natively.
NetDraw, developed for network visualization, has advanced graphical properties and
is further discussed in Section 3.1.1. In addition to export functions to Pajek and
Mage, data can be exported for visualization in KrackPlot.

Descriptive methods
The program contains a large number of network analytic routines for the detection

7



Figure 1: UCINET spreadsheet editor containing the EIES data.

of cohesive subgroups (cliques, clans, plexes) and regions (components, cores), for
centrality analysis, for ego network analysis, and for structural holes analysis. As
an example, the output of a centrality analysis is presented in Figure 2. For each
node, it contains the in- and out-farness (the sum of the lengths of the geodesics to
and from every other node), and the in- and out-closeness centrality (the reciprocal
of farness times g − 1, with g the number of actors), some descriptive statistics,
as well as Freeman’s group closeness index (Freeman, 1979). The in-closeness for
the EIES acquaintanceship data is 43.9% and 68.6%, and the out-closeness is 15.6%
and 53.7% for time point 1 and 2, respectively. The data were dichotomized (see
Section 2.1) before the analysis. If the user does not dichotomize and symmetrize
the network, default options are used (all entries larger than 0 are given value 1,
and the data are symmetrized by using the maximum value in a dyad). The default
symmetrization was used here.

Group centrality options have been recently added (Everett and Borgatti, 2004).
The program finds the most central subgroup of fixed size, or tests the (degree)
centrality of a specified group. For the dichotomized and symmetrized EIES data
(first observation) the most central subgroup of 6 actors consists of sociologists and
anthropologists (centrality 87.5%). The degree centrality of the group of sociologists
is 24. These results differ from the results of Everett and Borgatti (2004), due to

8



Figure 2: UCINET log file presenting the results of centrality analysis of the

EIES acquaintanceship data (first observation).

the different transformations applied. The mean, standard deviation, and p-values
based on permutation tests are given: 27.6, 1.54, and 0.97, respectively.

Analyzing the dichotomized and symmetrized (reciprocal relations) EIES data to
detect cohesive subgroups based on complete mutuality (i.e., cliques) results in find-
ing 8 and 15 cliques in the EIES data at the first and second time point, respectively.
The cliques are presented in Table 3 (the cohesion index is provided by NetMiner, see
Section 2.4). UCINET gives the opportunity to further inspect the cliques by calcu-
lating the clique overlap with a single link hierarchical cluster procedure (which will
be presented in the next paragraph as an example of a procedure-based technique).
The cliques found at the second observation are the same or combinations of those
found at the first observation.

Procedure-based analysis
UCINET contains a number of routines for procedure-based analysis. One procedure,
cluster analysis, was already mentioned. Other procedures are multidimensional
scaling (metric or non-metric), two-mode scaling (singular value decompositions,
factor analysis, and correspondence analysis), analysis of roles and positions (struc-
tural, role, and regular equivalence) and fitting core/periphery models.
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Table 3: Cliques in the EIES acquaintanceship data obtained with UCINET.

First observation Second observation
Clique Actors Cohesion1 Clique Actors Cohesion1

1 14,20,22,24 7.000 1 1,2,31,32 6.222
2 14,16,22,24 7.467 2 1,11,31,32 6.588
3 14,22,24,29 8.000 3 1,13,31 5.118
4 14,20,24,25 9.333 4 1,18,31 5.800
5 2,9,32 14.500 5 1,29,31 4.143
6 1,2,31 10.875 6 1,8,11,32 10.182
7 1,18,31 29.000 7 1,2,9,32 8.615
8 16,21,22 7.909 8 3,14,23 9.667

9 10,20,29 6.692
10 14,20,22,24,29 8.438
11 14,20,24,25 8.615
12 14,16,22 6.214
13 14,15,29 5.800
14 15,29,31 6.214
15 16,21,22 10.875

1 Cohesion index of Bock and Husain (1950), provided by NetMiner.

There are hierarchical and non-hierarchical procedures to perform a cluster anal-
ysis of the relational data. Using the adjacency matrix as input, the actors are
clustered on the basis of their relations. In the analysis of clique overlap mentioned
above, the so-called clique overlap matrix is used as input. This matrix indicates
for each pair of actors the number of times they occur in the same clique. The
result for the first observation of the EIES data, that is, a tree diagram showing
the progress of the cluster analysis, is presented in Figure 3 (single link procedure;
average and complete link are also available). It shows the level of overlap between
the cliques (e.g., actors 14 and 24 are most often together in one clique, followed by
the combination of actors 14, 22, and 24).

Several types of structural equivalence procedures can be performed based on the
measurement of equivalence (Euclidean distances, correlations, cost functions). The
equivalence of the actors is given in a so-called equivalence matrix, which is the input
of a hierarchical cluster procedure to find clusters of actors. For example, using the
procedure based on comparisons of actor profiles (rows or columns in the adjacency
matrix) measured by Euclidean distances (Burt, 1976), actors 12 and 23 are most
equivalent, with the minimum distance of 5.8 between them (first observation of
the acquaintanceship data). These actors are the first ones to be joined in one
cluster. Actor 1 joins this cluster at one of the last stages of the process, having an
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Figure 3: UCINET tree diagram for the single link hierarchical clustering of the

clique overlap matrix (first observation of the EIES acquaintanceship data).

equivalence value of 16.3 and 15.9 with actors 12 and 23, respectively.

Statistical modeling
Various statistical routines are available in UCINET, ranging from simple statistics
to fitting the p1 model (Holland and Leinhardt, 1981). There are autocorrelation
methods, QAP correlation and regression procedures, and univariate vector meth-
ods combined with permutation tests. An example of the latter group of methods
is ANOVA with attribute vectors and/or rows or columns of the adjacency matrix,
representing a sending or receiving actor, as variables. This is different from pro-
cedures where all incoming and outgoing links in an adjacency matrix are used as
input for an ANOVA (e.g., MultiNet).

Fitting the p1 model to the first observation of the dichotomized EIES acquain-
tanceship data gives estimates of the ‘density’ and ’reciprocity’ parameters (-3.45
and 4.39), and for each actor the expansiveness and popularity parameters (not
presented). Expected values and residuals to inspect the fit of the model are given
as well. Computation of QAP correlations between the three EIES matrices gives
the correlations as presented in Table 4, with p-values indicating the percentage of
random correlations that are as large as the observed correlation in 2500 permuta-
tions (see Krackhardt, 1987). Besides Spearman correlations, the simple matching
coefficient, the Jaccard coefficient and Goodman-Kruskal’s gamma are calculated.
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Table 4: QAP correlations obtained with UCINET in the

EIES data (p-values in parentheses; 2500 permutations).

Acquaintanceship
time 1 time 2

Acquaintanceship time 2 0.809 (0.00) — —
Messages sent 0.240 (0.00) 0.347 (0.00)

2.3 Pajek

Pajek (Version 0.94; Batagelj and Mrvar, 2003a) is a network analysis and visual-
ization program, specifically designed to handle large data sets. The main goals in
the design of Pajek are 1) to facilitate the reduction of a large network into several
smaller networks that can be treated further using more sophisticated methods, 2) to
provide the user with powerful visualization tools, and 3) to implement a selection
of efficient network algorithms (Batagelj and Mrvar, 1998). The program can be
downloaded free of charge, and its developers are continually updating it. There is
no online help, however, and the available documentation is not sufficiently detailed
for users who are not experts in network analysis2.

Pajek can handle multiple networks simultaneously, as well as 2-mode networks,
and time event networks. Time event networks summarize the development or evo-
lution of networks over time in a single network (using time indicators). In Pajek

very large networks can be analyzed, with more than one million nodes. (The avail-
able memory on the computer sets the actual limit. To save memory, names and
labels of nodes are not kept for extremely large networks, but these can be attached
later to smaller subnetworks.)

Large networks are hard to visualize in a single view. Therefore meaningful
substructures have to be identified, which can be visualized separately. The algo-
rithms implemented in Pajek are especially designed for this purpose (see Batagelj
and Mrvar, 2003b). Pajek uses six different data structures: 1) networks (nodes
and arcs/edges), 2) partitions (classifications of nodes, where each node is assigned
exclusively to one class), 3) permutations (reordering of nodes), 4) clusters (subsets
of nodes), 5) hierarchies (hierarchically ordered clusters and nodes), and 6) vec-
tors (properties of nodes). Partitions contain discrete attributes of nodes, whereas
vectors contain continuous attributes.

The structure of the program is entirely based on these six data structures and
on transitions among these structures. The main window presents six drop lists –

2A very helpful and well-written textbook by De Nooy, Mrvar, and Batagelj, on using Pajek for

exploratory network analysis is forthcoming.
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one for each data object – as well as buttons to open, save, and edit the data objects
in these lists. The program is menu-driven, where the menu items are ordered
according to the data objects to which they apply. The results generated by the
procedures are usually presented using the data structures (instead of graphical or
tabular output), and can be used as input in other procedures such as visualization
methods.

Data entry and manipulation
Network data can be entered in four ways: 1) by defining a (small) network inside the
program, 2) by importing ASCII network data from network files (extension NET),
3) by importing data from software packages with other formats (e.g., UCINET DL-
files and formats of some visualization programs), and 4) by opening a Pajek project
file (PAJ), which combines all different data structures into a single file. The NET-
files consist of a node list and arcs/edges list, aimed at entering large networks more
efficiently, specifying only the existing ties. For small networks the link list can be
replaced by an adjacency matrix. Other data objects can be imported from ASCII
data files or generated inside the program. For example, attribute data have to be
entered as partitions in ASCII data files (CLU) or as vectors in ASCII data files
(VEC). All data objects together can be saved in a PAJ-file.

Pajek contains manipulation options for all its data structures. For example,
networks can be transposed, directed graphs changed into undirected graphs and vice
versa, lines can be added or removed, or the network can be reduced by shrinking
classes or extracting parts. The program also contains basic network operations like
recoding or dichotomization. There is no option to specify missing relations, whereas
it is possible to specify missing values for attributes (partitions and vectors). Also,
there are ample transformations for attributes and options to create other data
objects on the basis of the attributes (hierarchies, clusters).

Pajek offers facilities for longitudinal network analysis. Time indicators for the
actors’ presence in the network at certain observations can be included in the data
files, and the user can generate a series of cross-sectional networks. Analyses can
be performed on these networks, and the evolution of the network can be examined
(e.g., the evolution of balance in a network). These analyses are non-statistical; for
statistical analysis of network evolution the module SIENA of the StOCNET package
can be used (Section 2.7; see also Snijders, 2004).

Visualization techniques
The graphical properties of Pajek are advanced. The Draw window gives the user
many options to manipulate the graphs (layout, size, color, spin, etc.). Moreover,
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graphical representations of partitions, vectors, and combinations of partitions and
vectors can be obtained. The network drawing is based on the principle that dis-
tances between nodes should reveal the structural patterning of the network (see
also Freeman, 2004). Besides simple layouts (circle, random), Pajek has several au-
tomatic procedures to find optimal layouts: procedures using eigenvectors, special
procedures for layer drawing of acyclical networks, and spring embedders. The latter
procedures are called so, because in those algorithms it is assumed that the nodes
are connected by springs, whose stress is to be minimized.

Pajek uses two spring-embedding algorithms to visualize network data: the
Kamada-Kawai and the Fruchterman-Reingold algorithms. The former one pro-
duces more stable results, but is slower and less suited for large networks. The
latter algorithm is faster and can handle large networks. Both are optimization pro-
cedures that do not yield the same mapping each time they are run. The graphs,
however, should resemble each other largely.

The Kamada-Kawai algorithm is used to draw a graph of the EIES acquain-
tanceship data at the first observation point, which is presented in Figure 4. In
the network drawing, partitions (here: actor’s discipline) are depicted by colors and
shapes: a blue diamond is sociology, a red circle is anthropology, a magenta circle
is statistics, and a green box is psychology. Vector values (here: number of cita-
tions) are represented by the size of the nodes, where larger nodes indicate higher
citation rates. The nodes can be dragged and dropped to improve the graph, and
right-clicking a node shows (textually) to which other nodes it is tied. The programs
NetDraw, distributed with UCINET, and NetMiner have the same functionalities.

By creating a super matrix that combines the two acquaintanceship matrices
(at the two time points), a visualization of the (dichotomized) EIES data over time
can be created (see Everton, 2002). Such a super matrix can be created in, for
instance, UCINET, and can be exported to Pajek or opened in NetDraw. Using the
Fruchterman-Reingold algorithm to draw the network results in a visualization of
the evolution of the network, presented in Figure 5. Networks can also be drawn
manually by dragging and dropping nodes with the mouse, as was done to improve
the graph in Figure 5. Pajek also supports 3D visualization. The visualizations can
be saved using several formats, amongst others (encapsulated) postscript file (EPS),
scalable vector graphics file (SVG), kinemages file (KIN), bitmap file (BMP), and
virtual reality file (VRML).

Descriptive methods
Each data object in Pajek has its own descriptive methods. The largest number
of methods is available for networks, for instance, computation of degrees, depths,
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Figure 4: Pajek draw window presenting the graph of the dichotomized EIES

acquaintanceship network (first observation) using the Kamada-Kawai spring

embedder.

cores, or cliques (output is a partition), centrality (closeness, betweenness), detection
of components (weak, strong, biconnected, symmetric), paths, or flows, structural
holes, and some binary operations on two networks. The menu Info gives general
characteristics of each data structure.

Computing closeness centrality with Pajek is straightforward. The network has
to be dichotomized before calculating the closeness. For directed graphs, the in- or
out-closeness can be calculated as well as the closeness for the symmetrized network
(default using the maximum of the two links) by choosing the command All. This
latter option gives 0.390 and 0.515 for closeness for time points 1 and 2, respectively.

Identifying cliques in large networks is difficult, because of the large number
of cliques. Therefore, unlike UCINET, Pajek has no direct procedures for detecting
cliques. There is, however, an indirect way of finding cliques by looking for com-
plete triads (cliques of size 3) in a network (De Nooy, Mrvar, and Batagelj, 2002).
Using the option to search for particular fragments (in this case triads) in the first
observation of the dichotomized and symmetrized (based on reciprocated relations)
acquaintanceship network, cliques of size 3 are found. The output, presented in Fig-
ure 6, consists of several data objects, one of them being a subnetwork made of the
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Figure 5: Pajek draw window presenting the simultaneous drawing of the

dichotomized EIES acquaintanceship networks (both observations) using the

Fruchterman-Reingold spring embedder.

desired cliques. Figure 6 shows the triads (cliques of size 3), as well as the cliques of
size 4, which were also found with UCINET (see Table 3). In addition, a hierarchy
is generated to inspect the overlap of triads, as well as a partition to identify the
number of triads to which a node belongs (not shown here).

Instead of a clique-procedure, Pajek contains the procedure p-cliques. This pro-
cedure results in a partition of the network nodes into clusters such that the nodes
within one cluster have at least a proportion of p neighbors inside the cluster (cf.
NEGOPY, Section 3.2.1). For large networks it is preferable to use k-cores instead of
cliques, because of the computing time. Dense parts of large networks can be found
using k-cores.

Procedure-based analysis
Pajek contains several procedure-based methods, for instance, for detecting struc-
tural balance and clusterability, hierarchical decomposition, and blockmodeling (struc-
tural, regular equivalence). For the analysis of structural equivalent actors, dissim-
ilarities between nodes can be computed in several ways. In its pull-down menu,
Pajek indicates if the network is too large for calculating dissimilarities, in view of
the computational complexity and the amount of time involved. For the first ob-

16



Figure 6: Pajek draw window presenting the subnetwork consisting of triads

(cliques) in the first observation of EIES acquaintanceship network.

servation of the acquaintanceship data dissimilarities between actors are calculated
using Euclidean distances, and the resulting matrix is used in a hierarchical cluster
analysis, using Ward’s linking method to combine clusters (the default option out
of six). The resulting clusters are presented as a hierarchy and the corresponding
dendrogram is saved in an EPS-file. The dendrogram, presented in Figure 7, shows
two very dissimilar clusters: one containing the actors 1, 2, 6, 7, 9, 13, 26, 27, 30,
31, and 32, i.e., few sociologists, and actors with low citation rates, who were all
positioned on the right side of the graph in Figure 4, the other containing the re-
maining actors. An almost identical solution was found with UCINET that employs
the single linkage method.

Blockmodeling the dichotomized acquaintanceship data in which the block types
are defined using structural equivalence, does not yield statisfactory results. Start-
ing from random partitions, the final, best fitting partitions (in 2, 3, or 4 blocks) still
had large associated error scores (125, 115, 111, respectively). Besides blockmodel-
ing based on structural and regular equivalence, Pajek can be used for generalized
blockmodeling, where combinations of permitted block types can be defined by the
user (see Doreian, Batagelj, and Ferligoj, 2004).
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Figure 7: Dendrogram of the hierarchical cluster analysis (Ward linkage) of the

EIES acquaintanceship data (first observation) obtained with Pajek.

Statistical modeling
The program contains only a few basic statistical procedures. Attributes of nodes
(including structural properties that can be expressed as attributes), which are avail-
able as partitions and vectors, can be included in statistical analyses: computation
of correlations, linear regression, and cross-tabulation (including some measures of
association). However, the statistical package R can be called with Pajek data struc-
tures (networks and vectors) and the statistical procedures available in R can be
used (see Section 3.3).

2.4 NetMiner II

NetMiner II (Version 2.0.5; Cyram, 2003) is a software tool that combines social net-
work analysis and visual exploration techniques. It allows users to explore network
data visually and interactively, and helps to detect underlying patterns and struc-
tures of the network. Two versions of the program are available for users: NetMiner

II for Windows (commercial) and NetMiner II for Web (online freeware with reduced
functionality compared to the commercial product). Both versions are Java-based
applications. A free evaluation version is available, which can be used for 21 days
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without registering. NetMiner offers good support providing online help and a user’s
manual that can be downloaded from the Cyram website.

The program is especially designed for the integration of exploratory network
analysis and visualization. In order to facilitate this integration the main window
of the program contains a map frame in which the results of the analysis are graph-
ically presented and a separate map control toolbar (apart from the main toolbar).
Moreover, the Explore panel can be activated to inspect the results of the analysis.
In Figure 8 the main NetMiner window and its features are presented.

Data entry and manipulation
NetMiner adopts a network data model that is optimized for integrating analysis
and visualization. It combines three types of variables: adjacency matrices (called
layers), affiliation variables, and actor attribute data. The data can be entered in
three ways: 1) directly via the built-in matrix editor (a spreadsheet editor similar to
the one that is available in UCINET, see Figure 1), 2) by importing Excel datasheets,
comma-separated ASCII values files (CSV), or UCINET DL files, or 3) by opening a
NetMiner data file (NTF), which contains the values of the three types of variables.
Data sets are saved as NTF-files or can be exported in Excel, CSV, or UCINET DL

format.
The program contains ample data manipulation options (transformation, recod-

ing, symmetrizing, dichotomizing, selection, normalization, etc.), facilitated by the
data manager that contains the transformation history. It is possible to create
random graphs (including scale-free networks) and to edit text files. A drawback,
however, is that the program does not allow the specification of missing values.

Visualization techniques
Like Pajek and NetDraw, NetMiner has advanced graphical properties. Moreover,
almost all results are presented both textually and graphically, contrary to both
other programs, where the user needs to request visualization of the results of a
certain analysis. In NetMiner graphical and textual results are directly obtained via
the Explore function of the main menu. The other two functions of the main menu
produce either textual results in report form (Analyze), or graphs (Visualize) with
various options.

The Analyze function has reduced computing time in comparison to the Explore
function and contains more analysis methods. Network drawing can be based on
spring-embedding algorithms, multidimensional scaling, so-called applied procedures
based on analysis procedures (e.g., centrality vectors or clustering combined with
spring embedders), and simple procedures (circle, random).
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Figure 8: NetMiner II user interface presenting the graph for the dichotomized

EIES acquaintanceship network (first observation) using the Kamada-Kawai

spring embedder.

The Kamada-Kawai and Fruchterman-Reingold algorithms are the spring em-
bedders that are implemented in NetMiner, as well as two algorithms based on the
spring embedder by Eades. In Figure 8 the user interface of NetMiner is presented, in
which the map frame contains a graph of the first observation of the EIES acquain-
tanceship network obtained with spring embedding algorithm of Kamada-Kawai.
The aim of the Kamada-Kawai algorithm is to find a set of coordinates in which,
for each pair of nodes, the Euclidean distance is approximately proportional to the
geodesic distance between two nodes (e.g., see Everton, 2002, and Freeman, 2004).
Although the procedure does not produce exactly the same mapping each time it
is used, the graphs obtained with the Kamada-Kawai algorithm in Pajek (Figure 4)
and NetMiner (Figure 8) largely resemble each other.

NetMiner has the functionality to set node shape, color, and size according to
three attribute variables (both categorical and continuous), like Pajek and NetDraw.
In Figure 8 the nodes are colored and shaped according to the attribute discipline:
a blue diamond is sociology, a red circle is anthropology, a magenta triangle is
statistics, and a green box is psychology. The size of the nodes reflects the value
of the second attribute, the number of citations, where larger nodes reflect higher
citation rates.
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The multidimensional scaling algorithms for drawing graphs in NetMiner can be
metric or non-metric. For instance, Torgerson-Gower’s classical metric multidimen-
sional scaling (principal coordinate analysis), based on an eigenvalue decomposition
of which only the first two positive eigenvalues and eigenvectors, can be applied.

NetMiner supports various 3D visualizations and contains a graph editor which
can be used to generate new graphs (random placement of nodes or positioning by
user) or edit existing graphs (adding new nodes or links). All visual displays can
be saved in a wide variety of formats (including EPS, GIF, JPEG, PDF, PNG, EMF,
etc.).

Descriptive methods
The network statistics available in NetMiner include methods to analyze the connec-
tion and neighborhood structure of the network (e.g., influence, structural holes) and
subgraph configurations (dyad and triad census), to calculate centrality measures
(e.g., closeness, betweenness), and to analyze subgroup structures (cliques, clans,
cores). To show the integration of standard network methodology and visualiza-
tion in NetMiner, the closeness centrality index was calculated for the dichotomized
EIES acquaintanceship data (first observation). NetMiner, like Pajek, has the option
to calculate the in- and out-closeness of directed graphs. UCINET only calculates
closeness for undirected graphs.

Via the Explore menu the in-closeness centrality was calculated. The output
consists of two parts: a report containing the closeness indices (at actor and network
level) and a graphical presentation of the calculated closeness, the so-called centrality
map, presented in Figure 9. The figure shows the NetMiner user interface and the
visual presentation of in-closeness statistics in the map frame, in which also the
centralization index (the in-closeness for directed graphs) is given: 0.439. The out-
closeness is given in the textual output (obtained by clicking the Report-button):
0.156. For the second observation of the EIES data, the in- and out-closeness equal
0.686 and 0.537, respectively. The same values were found with UCINET and Pajek.

Figure 9 shows one of the interactive features of NetMiner: right-clicking a node
opens a context-sensitive menu with which network properties of the node can be
obtained (in-degree, out-degree, egonet size and density) or the neighborhood of the
selected node can be drawn (in a new submap window). For actor 6 the network
properties are presented (note that the egonet density cannot be calculated because
node 6 is only connected to one other node).

Figure 10 displays the result of the analysis of cohesive subgroups: the visualiza-
tion of cliques in the EIES data, dichotomized and symmetrized as before. It presents
the cliques labeled G1 to G8 and its members. The cliques found by NetMiner are
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Figure 9: NetMiner II user interface showing the closeness index and centrality

map for the EIES acquaintanceship data (first observation).

shown in Table 3, and are the same as those found by UCINET. Additionally, Net-

Miner reports for each clique the cohesion index by Bock and Husain (1950). This
index measures the degree to which strong ties are within rather than outside the
clique. If the index is equal to 1 the strength of ties does not differ within the sub-
group compared to outside the subgroup. If the ratio is larger than 1 the ties within
the subgroup are more prevalent than the ties outside the subgroup.

Right-clicking a clique in the map opens a menu with which properties of the
group, group member lists, or group networks can be obtained. In Figure 10 the
member list of clique G7 is shown, as well as the group network of clique G3. Pre-
vious versions of NetMiner (Version 1.x) had the option to draw directly bipartite,
co-member, and overlap maps of the cliques. Unfortunately, in NetMiner these fea-
tures can only be obtained indirectly. For example, the clique bipartite map can
be obtained by adding the clique affiliation matrix to the data set (via the analysis
report), selecting the affilition mode (in the Transform menu), and choosing the
bipartite method. The node-clique bipartite graph for the EIES data is presented is
Figure 11. The cliques are represented by yellow boxes labelled K1 to K8.

Procedure-based analysis
NetMiner contains routines for multidimensional scaling, correspondence analysis,
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Figure 10: NetMiner II user interface showing the cliques (at least size 3) for

the EIES acquaintanceship data (first observation).

cluster analysis, and matrix decompositions (eigen, singular, spectral). These proce-
dures are integrated in the Explore/Analyze submenus and are available as separate
options in the Statistics menu. The program also contains some procedure-based
routines to explore the role-set structure of a network (structural, role, and regular
equivalence). Finally, blockmodel routines are available, including goodness-of-fit
statistics and permutation tests of significance.

The structural equivalence procedure is used to analyze the first observation
of the acquaintanceship network, based on the similarity-of-tie-profiles among the
actors. For all pairs of actors the structural equivalence is computed using Euclidean
distances (Burt, 1976). The diagonal values are specified to be ignored. The mean
distance between pairs is 11.75 (S.D. 2.39).

Subsequent hierarchical clustering of the equivalence matrix gives a cluster di-
agram and the possibility to show the different clusters in a map. NetMiner gives
four possible cluster linkage methods (single, complete, average, and Ward), whereas
UCINET gives three, and Pajek six. For the comparison of different linkage methods,
a hierarchical cluster analysis with average linkage is performed. The equivalence
map is presented in Figure 12. In this map the different clusters are shown by giv-
ing them different colors (the number of clusters is chosen to be 4; the colors are
assigned by the program). In the top of the map actors 1 and 31 form one cluster,
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Figure 11: NetMiner II user interface showing the cliques bipartite map for the

EIES acquaintanceship data (first observation).

while actor 2 constitutes a cluster by itself; on the right a cluster of nine actors is
found, on the left a cluster of 20 actors.

Comparing the cluster methods of the three packages UCINET, Pajek, and Net-

Miner, similar results are found (given the different linkage methods). In all programs
the equivalence measure was based on Euclidean distances, and actors 12 and 23
were found to be most equivalent, and actor 1 least equivalent with these two actors
(UCINET, Section 2.2). Inspecting Figure 12 confirms this finding, where NetMiner

locates actors 12 and 23 on one side and actor 1 on the other side of the map. The
dendrogram presented by Pajek (Figure 7) shows a similar clustering.

Statistical modeling
NetMiner supports a number of standard statistical routines: descriptive statistics,
ANOVA, correlations and regression. All of these routines can be applied to both at-
tribute vectors and (adjacency) matrices. The statistics are given with conventional
significance tests (based on independence and normality, which may not always be
appropriate) and random permutation tests. For adjacency matrices QAP permu-
tation is adopted (see Krackhardt, 1987). Besides, NetMiner provides Markov chain
Monte Carlo simulation tests for several network measures based on the on the
U | Xi+, X+j and U | Xi+, X+j ,M distributions (cf. the module ZO in StOCNET).
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Figure 12: NetMiner II user interface showing the equivalence map and cluster

map for the EIES acquaintanceship data (first observation).

The QAP-correlation found between the two time points of the acquaintanceship
data is 0.809 (significant at p = 0.001 level, 1000 simulations). This is the same
result as found by UCINET, but, unlike UCINET, NetMiner provides no additional
information on the test.

2.5 STRUCTURE

STRUCTURE (Version 4.2; Burt, 1991) is a program “providing sociometric in-
dices, cliques, structural and role equivalence, density tables, contagion, autonomy,
power and equilibria in multiple network systems” (reference manual, p. 1). It is
a command-driven DOS program that needs an input file containing commands
for data management and network analysis. After opening the input file, the pro-
gram executes the required routines without the possibility of user interaction. The
program can be downloaded free of charge together with a comprehensive manual
including introductions to network analysis, network data, and network models.

STRUCTURE supports network models within five types of network analysis.
These are autonomy (analysis of structural holes), cohesion (detection of cliques),
contagion, equivalence (analysis of structural or role equivalence and blockmodel-
ing), and power (analysis of network prominence and equilibrium). The programs
UCINET, Pajek, and NetMiner contain procedures to perform analyses of one or more
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of these types. Most procedures in STRUCTURE, however, are unique and cannot
be found in the other general programs. These procedures are discussed here.

Data entry and manipulation
STRUCTURE distinguishes four types of data: 1) direct measures of relations, 2)
binary choice data (obtained with a name generator), 3) sociometric rank order
data (where actors ranked their relations with others), and 4) (two-mode) joint
involvement data (actors’ involvement in the same events or affiliations with the
same groups). The first three types have to be presented as adjacency matrices in
ASCII data files with fixed positions. For the joint involvement data networks are
created by reading events in each network and aggregating the weight of events in
which each pair of actors is involved. Actor attributes are entered as ASCII values.
Output data files are written in ASCII fixed-column format (WRT).

The program has a few data manipulation options, which are only available
for directed relations: using diagonal elements as measures of strength of self-
relations, symmetrizing relations, and transforming relations (converting to row or
column marginals, eliminating negative relations, making networks row and/or col-
umn stochastic). For joint involvement data the weights can be defined in different
ways.

Visualization techniques
STRUCTURE has no procedures to visualize networks.

Descriptive methods
The analysis of structural holes is the single descriptive method available.

Procedure-based analysis
The procedure-based analysis methods offered by STRUCTURE are hierarchical clus-
ter analysis (detection of cliques, structural equivalence) and eigenvalue decompo-
sition (to compute power measures). STRUCTURE can detect different kinds of
cliques, depending on how relations are measured from the raw data and how cohe-
sion is defined from the relations (Scott, 1991). Detection of cliques by STRUCTURE

is based on hierarchical clustering of the matrix of cohesion, and is therefore different
from clique finding procedures in UCINET, Pajek, and NetMiner.

In STRUCTURE cohesion can be defined in several ways. If cohesion is defined
by the weakest relation between actors (default) and if cohesion between clusters is
defined by the minimum cohesion between the actors in the clusters (cliques), then
the clustering procedure will merge clusters if the minimum cohesion within the
clusters remains positive. Thus, cliques are found in which the actors are completely
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Table 5: Cliques in the EIES acquaintanceship data (first observation) ob-

tained with STRUCTURE.

Valued, unsymmetrized Dichotomous, symmetrized
Clique Actors Cohesion Clique Actors Cohesion

1 11,16,21 2 1 4,19 1
2 10,20,23,25 2 2 10,23 1
3 3,14,18,26 2 3 21,25 1
4 4,19,22,24,28,29 2 4 13,27 1
5 8,13,27,30 2 5 14,22,24,29 1
6 1,2,15,17,31 2 6 1,18,31 1
7 5,9,32 2 7 2,9,32 1

connected and have reciprocated relations. This also holds for cliques found by other
programs, but the difference in STRUCTURE is that an actor can appear in only one
clique. Other definitions of cohesion and other clustering methods result in different
kinds of cliques (see Scott, 1991).

Applying the algorithm to the acquaintanceship data (first observation), with-
out dichotomizing and symmetrizing the network, results in the detection of seven
cliques. These cliques are presented in the left part of Table 5, which also gives the
minimum cohesion within the clusters, here equal to 2 for all cliques. As a result of
the clustering procedure there is no clique overlap. Applying the algorithm to the
dichotomized and symmetrized (only reciprocated relations) EIES data again results
in seven cliques, presented in the right part of Table 5. Comparing these results with
the cliques in Table 3 shows that the solution is different, although cliques 5, 6, and
7 are found in both analyses.

Statistical modeling
STRUCTURE contains two routines for statistical modeling of the network data:
contagion analysis and analysis of network equilibrium. The analysis of contagion in
STRUCTURE is based on the principle that the structure of the network is such that
the behavior (attribute) of one actor is influenced by other actors. This means that
attribute values of actors are correlated, due to the structure of the network. Stated
otherwise, an attribute that is affected by contagion results in network correlation.
In STRUCTURE this is modeled with a regression equation in which the dependent
variable is the attribute value of one actor (ego) and the independent variable is
the weighted average of the values of the same attribute of the other actors (alters),
where the weights reflect the structure of the network. This kind of contagion
analysis is not directly available in the programs described earlier.
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Table 6: STRUCTURE output of the contagion analysis for the EIES acquaintanceship

data (first observation) with the attribute citation.

Observed responses mean: 22.906

S.D.: 31.737

Expected responses from contagion mean: 24.088

S.D.: 8.129

Contagion effect (32 observations)

regression intercept: -7.426

regression slope: 1.259

correlation: 0.323

jackknife t-test (31 df): 1.508

The program has two options to define the network weights: by equivalence
(Euclidean distances) or by cohesion (relation values). Given these weights the
regression equation is estimated with ordinary least-squares (OLS). If the input
data are a random sample from a population, OLS gives inconsistent and inefficient
estimates, and other estimation procedures must be used (Ord, 1975; Doreian, 1980).
If the data are population data, however, then OLS is accurate. This is typically
the case in network analysis (Scott, 1991). The significance of the contagion effect
(the slope of the regression equation, i.e., the network correlation) is tested with
a jackknife t-test. A contagion analysis was performed on the acquaintanceship
data (first observation), with citation as the attribute affected by contagion and the
weights defined by structural equivalence. The results are presented in Table 6.

The observed (ego) and expected (alters) citation rates are given together with
the results on contagion. The network correlation of 0.323 is not significant according
to the jackknife t-test (with g − 1 = 31 degrees of freedom), which indicates that
structurally equivalent actors (researchers) do not tend to have the same citation
rates.

The analysis of network equilibrium in STRUCTURE is based on the distribution of
power, which is obtained with eigenprocedures (Katz, 1953; Bonacich, 1976). An
actor is defined to be powerful if he receives many exclusive relations from powerful
others. The scores range from 1 (most powerful) to 0 (weakest). Analysis of the first
observation of the acquaintanceship data reveals that actor 1 is the most powerful
(1.00) and actor 6 (0.05) is the weakest actor (see the graph of the network in
Figures 4 or 8).

Network equilibrium is analyzed by predicting how relations in a network will
change if powerful actors could initiate any relation they want. This prediction is
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Table 7: Turnover table to equilibrium in the EIES ac-

quaintanceship data (first observation) obtained with STRUC-

TURE.

Equilibrium
Observed None Weak More Strong Total
None (z = 0) 222 120 0 0 342
Weak (z < 0.1) 112 496 17 0 625
More 8 8 8 1 25
Strong (z > 0.5) 0 0 0 0 0
Total 342 624 25 1 992

based on a linear regression model that predicts the value of equilibrium relations
from observed relations (Scott, 1991). The equilibrium relations from actor i to j

are defined by zij
(
pi
pj

)
, where zij is the relation from i to j divided by the row sum

(row stochastic adjacency matrix), and pi is the power of actor i. The analysis of
the first acquaintanceship network results in a regression equation which predicts
42.4% of the variation in the equilibrium relations (the correlation is 0.65). A high
correlation means that equilibrium relations and observed relations are alike, which
implies that the inclination to change relations is small.

The program gives a so-called turnover table to equilibrium (presented in Ta-
ble 7), showing the association between observed relations and equilibrium relations.
It is used to determine stability and locate unstable classes of relations. The relations
are divided into four classes. From the table it follows that change is primarily zero
strength relations becoming weak and vice versa. This indicates that the network is
relatively stable.

STRUCTURE provides an option for Monte Carlo network analyses. In such analyses
networks can be simulated according to the uniform, (nearly) normal, or lognormal
probability distribution. With these simulated networks, studies of any of the net-
work models in the program can be carried out.

2.6 MultiNet

MultiNet (Version 4.24 for Windows; Richards and Seary, 2003) is a program suitable
for the analysis of large data sets and sparse network data. The program is designed
for contextual analysis, that is, analyzing network data with nodal attributes. Be-
sides network data, the program contains some methods to analyze attribute data
(crosstables, ANOVA, correlations). It is menu-driven, where higher level menus
and extra menu items become available after the necessary options are specified. It
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has context sensitive-online help and, like NetMiner, gives both graphical represen-
tations of the results and textual output. An example of the MultiNet user interface
(including an example of some graphical output) is presented in Figure 13.

The program is available from the authors. There is no complete user’s manual,
which makes it difficult to use and explore MultiNet to its full extent, but the au-
thors provide useful information and some papers on MultiNet modules (Seary and
Richards, 2000; Seary, 2003).

Some of the network analysis methods and procedures in MultiNet were origi-
nally contained in separate programs. FATCAT (Version 4.2, Richards, 1993), for
instance, performs the same type of categorical social network analysis and pro-
duces the accompanying contingency tables and panigrams as MultiNet. Although
incorporated in MultiNet, FATCAT is still freely available as a stand-alone DOS pro-
gram that runs under Windows. The program is interactive and menu-driven and
it provides context-sensitive online help. Another program integrated in MultiNet

is PSPAR (Seary, 1999), which estimates the p∗ model (Wasserman and Pattison,
1996) for sparse matrices.

Data entry and manipulation
Because MultiNet is designed for the analysis of large networks, like Pajek it uses node
and link lists as data input instead of adjacency matrices. The former is a list of all
actors in the network together with the values of the available attributes, the latter is
a list of the (existing) relations between the actors. There are three options to enter
the data: 1) by opening a MultiNet system file (MNW), 2) by importing ASCII data
from node (NOD) and link (LIN) files, or 3) by opening data in comma-delimited
files (CSV). In the link file non-existing relations (e.g., the relations with value 0 in
the acquaintanceship data) do not have to be specified. Multiple link variables, like
the two observations of the EIES data, have to be included in one link file. Data
are saved in MNW files or exported to ASCII NOD and LIN files. Distributed with
the program are the two stand-alone utilities ADJ2NEG and FREEFIX to create node
and link import files.

The program contains some data manipulation options (recoding, grouping vari-
ables together) and has a simple data manager. It is possible to a value for missing
observations, which has to be the same for all network and attribute variables. There
is also an option to treat missing links as zero values (no links) and vice versa.

Visualization techniques
MultiNet contains procedures to give graphical representations of almost all output
generated by the analysis routines. It has graphical tools to draw histograms, cu-
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Figure 13: MultiNet user interface showing a normal eigendecomposition for

the dichotomized EIES acquaintanceship data (first observation).

mulative distribution functions, and line diagrams. Networks are visualized using
eigendecompositions (see Figure 13). Crosstables are visualized with so-called pani-
grams (see Figure 14). Adjacency matrices can be presented visually (see Figure 15),
which can be useful to display large networks. To detect clustering one can permute
the adjacency matrix according to actor attribute.

All graphical representations are interactive, which means that the user can click
on displays to inspect attribute values or probability levels, explore effects, permute
displays, or find information on nodes and links. The program also has several
options to improve the displays (rotation, translation, magnification). The graphs
can be saved, either as postscript (PS) or bitmap (BTM) files.

Descriptive methods
For network data the degree, betweenness, closeness, and components statistics can
be computed, together with frequency distributions of these statistics. Frequency
distributions and corresponding descriptives, like mean and standard deviation, of
the network data (the links) and the attribute data (nodes) can be obtained as well.
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Procedure-based analysis
With MultiNet one can analyze the structure of networks with several eigenspace
methods. The methods create visual displays of the network such that the location
of the actors reveals the structure of the relationships and their patterns (Richards
and Seary, 2000; Freeman, 2004). Thus, the eigenmethods pursue the same goal as
the spring-embedding algorithms (used in NetDraw, Pajek, and NetMiner) and the
multidimensional scaling procedures (used in NetDraw and NetMiner). Pajek also
contains some eigenmethods.

Eigenprocedures require dichotomized and symmetrized data. The result of an
eigendecomposition is an eigenspace that can be used to visualize the network struc-
ture (Seary, 2003). In the visual displays the coordinates of the nodes are based
on the coordinates of the first two or three eigenvectors, yielding 2D and 3D dis-
plays, respectively. Between the nodes lines are drawn based on the link variable
(i.e., the dichotomized and symmetrized links in the original network). Associated
with each dimension is a certain amount of variance in the original data, where
the largest amount of variance is associated with the first dimension, and so on. A
one dimensional display of the network can be generated as well, based on the first
eigenvector. This is a so-called virtual adjacency matrix in which only the existing
links are shown (using sparse methods; see Seary, 2003).

The results can be rotated, resized and rescaled to obtain a better presentation
of the data. The eigenspace methods can also be used to partition the actors on the
basis of the network structure. In Figure 13 the three dimensional normal eigen-
decomposition of the dichotomized EIES acquaintanceship data (first observation)
is presented. The actors are colored according to their discipline (1–4: sociology–
psychology). For every eigendecomposition a textual report is generated that in-
cludes details about the current eigenspace.

Statistical modeling
MultiNet contains four statistical techniques to analyze network data, of which the
first three can also be used for the standard analysis of actor attribute data: 1)
crosstables and χ2-tests, 2) ANOVA, 3) correlations, and 4) the p∗ exponential
random graph model (Wasserman and Pattison, 1996; Seary and Richards, 2000).

Crosstables are visualized using panigrams. An example is presented in Fig-
ure 14. The tables and panigrams are used to explore the association within networks
(out- and in-degrees, i.e., sender and receiver effects) or the association between net-
works and an attribute. In Figure 14 a panigram of discipline and incoming links
(receiver effects) of the first observation of the acquaintanceship network is pre-
sented. The links can take the values 0 to 4 (‘have not met’ to ‘close friends’),
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Figure 14: MultiNet user interface presenting the panigram of discipline and

the first observation of the EIES acquaintanceship network (incoming links).

discipline the values 1 to 4. Interactive help is available, explaining the meaning of
the ‘cells’. For example, 20.5% of the links with value 0 (‘have not met’) come from
actors with discipline value 2 (anthropology) and 9.4% from members of discipline
3 (statistics). The χ2-statistic equals 23.4 (df = 12, p < 0.05), which indicates a
significant association between the variables (with sociologists receiving more friend-
ship choices). The association between discipline and outgoing links (sender effects)
of the first acquaintanceship network is also significant (results not reported here).

In Table 8 the results of two analyses of variance for the first observation of
the acquaintanceship data are presented. The independent grouping-variable is the
nature of the relation between two actors (sender and receiver) at the first time
point. The dependent variables are the mean citation rates of the senders and the
receivers. A graphical display of the citations per relation-group is produced as well
(not shown). From the table it follows that there is a significant difference between
the mean citation rates of receivers, but not between the senders. The means show
that receivers are on average less often cited in the ‘did not know’ relation-group.

The analyses differ from those performed by UCINET, where only one row or
column of the adjacency matrix is used in an ANOVA. By using all links in the
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Table 8: ANOVA results for the EIES acquain-

tanceship data (first observation) obtained with

MultiNet.

Relation n Mean citation of
receiver sender

Did not know 342 15.0 20.6
Had not met 137 29.8 23.2
Had met 360 27.8 23.5
Was friend 111 22.5 23.3
Was close friend 42 24.1 34.6

ANOVA: p-value < 0.01 > 0.10

analyses MultiNet assumes independence between all relations, whereas UCINET

assumes independence between actors. The former will generally not be the case,
and the user should therefore be very cautious interpreting the results.

MultiNet comprises PSPAR, an earlier program by Seary (1999), designed to fit p∗

models to large networks by pseudo-likelihood based on sparse methods. The method
fits the model parameters to triad statistics selected by the user. Blockparameters
can be obtained by fitting models of which the blockstructure is defined by one or
more (categorical) actor attributes. Figure 15 shows the p∗ graphic display window
obtained for the EIES acquaintanceship data (first observation). The effects included
in the model are density, reciprocity, transitivity, and the block parameter ‘choice
within blocks’ with the blocks defined by the attribute discipline. All estimates were
significant and are reported in Table 10 in Section 2.7, together with the estimates
obtained in StOCNET. The p∗ graphic display shows the adjacency matrix with
correctly predicted links (green), the false negatives (blue), and false positives (red).

2.7 StOCNET

StOCNET (Version 1.4; Boer, Huisman, Snijders, and Zeggelink, 2003) is an open
software system, in a Windows environment, for advanced statistical analysis of
social networks. It provides a platform to make available a number of statistical
methods, presented in separate modules, and allows new routines to be easily im-
plemented (Huisman and Van Duijn, 2003). The program is freeware and can be
downloaded from the StOCNET website. A user’s manual describing the opera-
tion of the StOCNET system is available, as well as a programmer’s manual, which
describes the main procedures and functionalities of the system to facilitate the in-
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Figure 14: MultiNet user interface with the p∗ graphic display window showing

the results for the EIES acquaintanceship data (first observation).

clusion of new statistical methods. On the website user’s manuals of all modules and
programmer’s manuals together with source codes of some modules can be found.

Analyses take place within sessions. A session consists of (a cyclical process of)
five steps: 1) data definition, 2) transformation, 3) selection, 4) model specification
and analysis, and 5) inspection of results. A typical StOCNET window is presented in
Figure 16 showing the user interface for the module SIENA for longitudinal network
data (see Snijders, 2004).

Data entry and manipulation
Network data have to be presented as adjacency matrices saved in ASCII format
with the values separated by blanks. Actor attributes have to be presented as ASCII
files as well, with blanks separating the values. Data sets are saved as ASCII data
files and StOCNET sessions are saved in session files (SNS). Export functions to
MultiNet, NetMiner, Pajek, and STRUCTURE are available. StOCNET contains a
recoding, symmetrizing, and selection option. Missing values can be specified, both
for network data and attributes. The handling of missing observations depends on
the statistical model selected in the modeling step.
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Figure 16: StOCNET user interface of the SIENA module for longitudinal anal-

ysis of the EIES acquaintanceship data.

Visualization techniques
StOCNET does not contain procedures for the visualization of networks.

Descriptive methods
In four of the five steps in a StOCNET session, descriptive analyses of the available
data can be performed by clicking the Examine button. This button is available in
the main windows of all steps (see Figure 16), except in the last step (i.e., inspection
of results). Degree variances, index of heterogeneity, dyad and triad census, degree of
reciprocity and transitivity, and segmentation are some of the network statistics that
are calculated for separate network data sets. For longitudinal analysis of networks,
change statistics are calculated.

Procedure-based analysis
There are no procedure-based routines available in StOCNET.

Statistical modeling
StOCNET contains five statistical modules: 1) BLOCKS, for stochastical blockmodel-
ing (Nowicki and Snijders, 2001); 2) ULTRAS, for estimating latent transitive struc-
tures using ultrametrics (Schweinberger and Snijders, 2003); 3) P2, for fitting the
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exponential random graph model p2 (Van Duijn, Snijders, and Zijlstra, 2004); 4)
SIENA, for the analysis of longitudinal network data (Snijders, 2001, 2004); and 5)
ZO for determining probability distributions of statistics of random graphs based
on the U | Xi+, X+j and U | Xi+, X+j ,M distributions (Snijders, 1991; Molloy and
Reed, 1995). Other exponential random graph models can also be fitted in StOC-

NET: the p1 model (Holland and Leinhard, 1981) as Examine option in P2, and the
p∗ model (Wasserman and Pattison, 1996) in SIENA where MCMC estimation with
the Robbins-Monro algorithm is applied to a single network observation instead of
repeated observations (Snijders, 2002; Snijders and Van Duijn, 2002),

The results of applying modules SIENA and P2 to the EIES data are shown in
Tables 9 through 11. Figure 16 shows the model-specific user interface for the SIENA

module. Both time points of the acquaintanceship networks are analyzed with the
dynamic actor-oriented model of Snijders (2001, 2004). The first observation of the
network is analyzed with the p2 model and with the p∗ model. For all models the
dichotomized data were used.

The estimated effects of the SIENA model are presented in Table 9 (see also Snijders,
2004, for a discussion on the interpretation of the parameters). The rate parameter
shows that on average the actors made about 2.5 relationship changes in the period
between the observations. In the evolution of the acquaintanceship network, a clear
reciprocity effect and a transitivity-type effect are present, the latter being specified
as a tendency away from indirect relations. There is also a tendency for popular
others (i.e., others who receive many choices). No significant attribute effects were
found3.

In the SIENA module, MCMC estimation with the Robbins-Monro algorithm
of p∗ model is implemented. As Snijders (2002) notes, both the pseudo-likelihood
estimation (as implemented in MultiNet but which can also be done with standard
software for logistic regression), and MCMC estimation using the Geyer and Thomp-
son (1992) method as used by Crouch, Wasserman, and Trachtenberg (1998) and
Corander, Dahmström and Dahmström (1998) are unsatisfactory. Since it is not
a function of the complete statistic, the pseudo-likelihood estimate has unknown
properties. This leads in any case to underestimation of the standard errors of the
estimates. MCMC estimation is not satisfactory either, because the simulation of
random graph distributions turns out to be a complicated matter due to bimodal-
ity, which leads to convergence problems. See Wasserman and Robins (2004) for

3Snijders and Van Duijn (1997) analyzed another dichotomization of the EIES data: not know-

ing/having met vs. having met/being friends. They found different effects (especially effects of the

attribute citation) influencing the evolution of the ’meeting’ network.
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Table 9: Estimated (significant) effects for

the evolution of the EIES acquaintanceship

data obtained with the SIENA module in

StOCNET.

Effect Est. S.E.

Constant change rate 2.47
Density (out-degree) -1.80 0.52
Reciprocity 2.06 0.39
Indirect relations -0.27 0.13
Popularity 6.40 1.05

an extended discussion of pseudo-likelihood and MCMC estimation of p∗ models.
Snijders (2002) and Snijders and Van Duijn (2002) propose several alternative simu-
lation methods to improve convergence, based on single relations, dyads and triplets,
using Gibbs or Metropolis Hastings steps, making small or large updates (through
inversion steps), and/or on conditional simulation (fixing the number of relations,
or the in- and outdegrees and thus limiting the outcome space). More developments
in this area are expected.

In Table 10 the results are given of fitting the p∗ model to the first observation
of the EIES data. Maximum pseudo-likelihood were obtained with MultiNet (see
Section 2.6). MCMC estimates with the Robbins-Monro algorithm were obtained
with the SIENA model in StOCNET. It was not possible to estimate the p* model
unconditionally. As soon as the transitivity effect was added to the model, no
convergence was obtained. It was possible to obtain estimates of the p∗ model
conditional on the number of ties, which means that no density effect is estimated.
The convergence of the model with the dissimilarity (or block) effect of discipline was
unsatisfactory as well, which shows in the large standard error for this effect, given
in Table 10. The convergence of the conditional model with only reciprocity and
transitivity was acceptable. The estimates for reciprocity and even their standard
errors are similar for pseudo-likelihood and MCMC. The estimates for transitivity
and the similarity (block) effect of discipline are quite different.

The p2 model is a random effects model with the dyadic ties as the dependent
variable (Van Duijn, Snijders, and Zijlstra, 2004). The sender and receiver param-
eters, fixed in the p1 model, are regressed on available – categorical or continuous
– nodal attributes (actor covariates). If no attributes are available, the regression
model reduces to random sender and receiver effects. Likewise, the density and
reciprocity parameters, can be linked to other available networks (dyadic covari-
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Table 10: Pseudo-likelihood estimates obtained with MultiNet and Markov Chain

Monte Carlo Robbins Monro p∗-estimates obtained with StOCNET for the EIES

acquaintanceship data (first observation).

Pseudo- MCMC Robbins Monro
likelihood conditional on ties

Effect Est. S.E. Est. S.E. Est. S.E.

Density -3.61 0.22
Reciprocity 1.94 0.23 2.15 0.31 2.20 0.30
Transitivity 0.32 0.036 0.17 0.01 0.17 0.01
Dissimilarity discipline 0.55 0.22 0.25 3.32

ates), without a random component. Dyadic covariates can also be computed from
the nodal attributes, for instance by taking their difference or absolute difference,
which are both standard options in the P2 module. Thus, dissimilarity matrices
are created. If the nodal attribute is categorical, one can construct dichotomous
(dis)similarity matrices, comparable to the block-parameters in MultiNet. Unlike
the p∗ model, the p2 model does not contain network effects other than reciprocity.

Table 11 contains the parameter estimates for the fixed and random effects of
the model. Dissimilarity with respect to citation has a significant negative effect on
density, in two ways: expressed as the absolute difference of the actors’ number of
citations, and expressed as the simple difference of the actors’ number of citations.
The first effect implies that the probability of an acquaintance relation decreases the
more actors differ with respect to their citations; the second indicates a directional
effect that actors whose citations are high tend to choose less often actors whose
citations are low. The second effect can be viewed as a refinement of the positive
sender effect for citation which indicates that the probability of an outgoing acquain-
tanceship relation (irrespective of the receiver attributes) increases with the number
of citations. The positive effect of similarity with respect to discipline indicates that
actors tend to choose more within their own discpline group, which effect was also
found for p∗ model in MultiNet. There is a general reciprocity effect, but this is not
differentiated according to dyadic attributes.

Analysis of the first observation of the acquaintanceship data with the stochastic
blockmodeling routine BLOCKS (results not shown here) reveals some classes of
stochastically equivalent actors (i.e., they have the same probability distribution of
their relations to other actors). The fit of the models, like the blockmodeling results
obtained with Pajek, however, is not very good. The blocks found do not coincide
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Table 11: p2-estimates for the EIES acquaintanceship data (first observation;

only significant effects) obtained with StOCNET.

Effect Parameter Est. S.E.

Density µ -2.79 0.29
Dissimilarity citation (abs. diff.) -0.017 0.005
Dissimilarity citation (diff.) -0.013 0.003
Similarity discipline 0.64 0.18

Reciprocity ρ 2.36 0.32

Sender Variance σ2
A 1.01 0.24

Citations 0.028 0.0082
Receiver Variance σ2

B 0.98 0.23
Sender-receiver Covariance σAB -0.40 0.18

with the partitions based on actor attributes.
ULTRAS, aimed at finding groups according to a latent structure based on ultra-

metrics (i.e., triadic distances between actors), was also applied to the first network
of the valued acquaintanceship network, using a Poisson distribution for the network
ties. The groups can be presented as a tree, branching further with larger distances.
The number of ultrametrics needs to be determined using a Bayesian model selec-
tion process. Here we found a solution with 7 ultrametrics that was not completely
stable (results not shown here). Some of the cliques found in UCINET (see Table 3)
were also found in the ULTRAS analysis.

More examples of statistical analyses with the StOCNET modules are given by
Huisman and Van Duijn (2003).

3 Social Network Software - other packages and rou-

tines

In this section other available software for social network analysis is briefly discussed,
without illustrations. We distinguish general packages and five types of special pur-
pose packages: for identification of subgroups, for knowledge networks, for hidden
populations, for kinship networks, and for statistical testing. Only the most impor-
tant features are mentioned. The final subsection treats routines and utilities for
the analysis of social networks developed to be used in a general statistical software
package or in a programming language.
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3.1 General packages

In this section seven general packages are mentioned (in alphabetical order). One of
them, GRADAP, is well-known since it has been around for more than fifteen years.
We consider GRADAP, although outdated, worth mentioning because it contains
routines and statistics not available in packages like UCINET or Pajek. The other
programs are quite new and regularly updated. We distinguish two kinds of general
programs: programs intended for data analysis that have visualization options (Agna

and SNAFU), and programs intended for network visualization that feature analysis
procedures (so-called visual exploration; InFlow, NetDraw, NetVis, and visone).

Agna (Version 2.0.7; Benta, 2003)
The platform-independent application Agna (Applied Graph & Network Analysis)
is designed for social network analysis and sequential analysis. Sequential analysis
deals with behavioral chains, which are modeled in order to find rules that govern the
inner structure of behavior. This inner structure is represented by dyad transitions.
Agna is designed to study communication relations in groups, kinship relations and
the structure of animal behavior. The analysis methods include general descriptives,
shortest path analyses, and centrality and sociometric coefficients. The program has
ample visualization options.

GRADAP (Version 2.0; Sprenger and Stokman, 1989)
The software package GRADAP (GRAph Definition and Analysis Package), an envi-
ronment for analyzing graphs and networks, is an organized set of programs explicitly
developed to analyze network data represented as graphs, and includes a wide range
of cohesive subgroup and centrality methods, and models for the distribution of in-
and outdegrees. It is only available as a DOS application and will not be updated
to a Windows environment.

SNAFU–MacOS (Version 2.0; Hagen, 2003)
SNAFU (Social Network Analysis Functional Utility) is a general-purpose network
analysis tool for MacOS systems, which is distributed “as-is” with no warranties or
support beyond reasonable requests. It imports and exports to UCINET, InFlow and
some visualization programs, and is generally oriented toward connected graphs of
a few hundred nodes. It includes network editing features, descriptive techniques,
some matrix algebra, visualization tools, and multiple example data sets.
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3.1.1 Visual exploration

InFlow (Version 3.0; Krebs, 2002)
InFlow is a commercial software package for network mapping, especially aimed at
organizational applications. It was originally developed for Macintosh, but has been
updated to Windows. Interactively, it carries out network analysis and network visu-
alization simultaneously (with ample graphical export options). Thus, it is possible
to express changes in the network directly in terms of network measures. It features
a number of descriptive and procedure-based routines, but no statistical methods.

NetDraw (Version 1.0.0.21; Borgatti, 2002)
NetDraw is a program for drawing networks. It is a free, stand-alone program, but is
also distributed together with UCINET. This reflects its close relation with UCINET:
it can be executed within UCINET and reads UCINET files natively without the need
for import and export functions.

NetDraw uses several different algorithms for displaying nodes in a two-dimensional
space, using a circle layout or layouts obtained with multidimensional scaling or
spring embedding. These layouts are based on geodesic distance (see Freeman, 2004,
and Sections 2.3 and 2.4). It has tools for grouping and automatically recoloring,
resizing, or reshaping of nodes, ties and labels to represent these groups. Graphs
can be rotated, flipped, resized, and saved in several formats, amongst others, as
bitmap (BMP) and JPEG files. Export functions to Mage and Pajek are available.
NetDraw includes some analysis procedures, for example, identification of isolates,
components, or k-cores, the results of which are displayed graphically.

NetVis (Version 2.0; Cummings, 2003)
With advances in open source software, social network researchers have new op-
portunities for analyzing and visualizing network data. One such possibility is the
NetVis module, a web-based tool to analyze and visualize social networks using data
from CSV files, online surveys, and dispersed teams. It is available online, where
data can be uploaded, analyzed, and output and (3D) graphs are generated, which
can be downloaded. For all algorithms, the source code is available.

visone (Version 1.0beta1; Brandes and Wagner, 2003)
The visone project team is developing models and algorithms to integrate and ad-
vance the analysis and visualization of social networks. It facilitates the visual
exploration of network data by experts as well as novices. Its origins lie in an
interdisciplinary cooperation with researchers from mathematics, computer and in-
formation science, and political science. visone is a research platform that is not
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intended to become a standard tool and is in development and therefore subject to
change.

visone contains several different algorithms for drawing graphs and representing
results of analysis. It uses spring embedders, spectral layouts, layered layouts, and
radial layouts to present networks. It has many options to improve the (layout of the)
graphs and visualizations can be exported in SVG or postscript format. The analysis
methods include local measures (degrees), distance measures (e.g., betweenness,
closeness), and feedback measures (e.g., status, eigenvector, authority).

3.2 Special purpose packages

In this section we discuss nine packages, divided into five specific areas of social net-
work analysis: identification of subgroups, knowledge networks, hidden populations,
kinship networks, and statistical testing.

3.2.1 Identification of subgroups

KliqFinder for Windows (Version 0.05; Frank, 2003)
KliqFinder is the Windows version of the Fortran and SAS-based program Kliq-
ueFinder (adapted for Windows by Richard Congdon). It is aimed at identifying
cohesive subgroups and produces a so-called crystallized subgroup representing the
subgroups and their relations within and between the clusters. The subgroups are
identified in an iterative algorithm maximizing the log odds of a tie within the group
(Frank, 1995, 1996). For the graphical representation of the subgroups, the program
SAS is called in KliqFinder,

NEGOPY (Version 4.30, Richards, 1995)
The main purpose of the DOS-based program NEGOPY is to find cohesive sub-
groups. To this end, it defines a number of role categories, such as groups, isolates,
participants on the basis of their linkage with other nodes, more or less similar to the
p-cliques discussed in the section on Pajek. The reader is referred to the manual for
exact definitions and how these definitions may be adapted, and short references in
Wasserman and Faust, 1994. The result is a discrete categorization of the nodes in
the network. NEGOPY uses partial decomposition methods, to approximate eigen-
decomposition methods unfeasible for large networks, whereas MultiNet calculates
exact eigenpairs (see Richards and Seary, 2000).

3.2.2 Knowledge networks

Blanche (Version 4.6.4, Hyatt, Contractor, Ferrone, Han, Hsu, Kochhar, Palazzo,
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Su, and Willard, 2002)
Since knowledge of the knowledge network causes changes and further evolution of
the knowledge network, the program Blanche was designed to create and simulate
models of network dynamics. It uses a system of nodes and links, and (non-linear
difference) equations that describe how the strengths of links and the attributes of
nodes change over time. It consists of three modules to create models, to create
data, and to run the model and output the results, respectively.

Iknow (Contractor, O’Keefe, and Jones, 1997)
Iknow is specialized Java-based software to collect and present data on communi-
cation and knowledge networks. In this kind of knowledge networks the nodes are
actors (individuals or organizations) and the links the knowledge or information
they have about characteristics of the other actors. These characteristics typically
concern knowledge of various domains. The software either collects interactively or
automatically, from the web, information about the network actors and their links,
and then presents this information in various ways.

Referral Web (Kautz, Selman, and Shah, 1997)
This Java-based software was developed in the area of artificial intelligence. It is
aimed at research communities and helps users, that is, researchers, explore the
social networks in which they participate (such that they can quickly find short
referral chains between themselves and experts on arbitrary topics). It either shows
the neighborhood of a specified researcher (the node), the path to some specified
other node or to an -unknown- expert on a specified topic. The program operates
by automatically generating representations of social networks based on evidence
gathered from publicly available documents on the internet. For instance, nodes
who are found to be co-authors, are linked. The definition of association on which
the linking is based may be difficult, and therefore the resulting networks may be
incorrect and/or incomplete.

3.2.3 Hidden populations

SNOWBALL (Snijders, 1994)
SNOWBALL is a DOS program for the estimation of the size of a hidden population
from a one-wave snowball sample, implementing the estimates proposed by Frank
and Snijders (1994). Snowball sampling is a term used for sampling procedures that
allow the sampled units to provide information not only about themselves but also
about other units. This is advantageous when rare properties are of interest.
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SocioMetrica LinkAlyzer (Version 2.1; MDLogix, 2002)
SocioMetrica LinkAlyzer is aimed at constructing a network from data obtained from
(a sample from) a difficult or hidden population. The program was developed to
investigate HIV links between drug users. The typical problem is that many actors
in the network are difficult to identify because of their use of, possibly various,
nicknames. To construct a network from the data that are usually collected as
egocentric networks (by interviewers) it is necessary to find out which nominees are
the same. The software tries to identify these actors by matching them on various
possible attributes such as gender, age, appearance, location(s), etc. Although the
software is commercial (available in two versions for smaller and larger networks), a
demo version can be downloaded from the web. It is possible to work with example
data or with other data (containing not more than 50 actors) and thus to get an
impression of the features of the program that also contains some standard network
measures like centrality. It has import and export possibilities to common other
packages such as UCINET, SPSS, and Excel.

3.2.4 Kinship networks

PGRAPH (Version 2.7 for Windows; White and Skyhorse, 1997)
PGRAPH is software for kinship and marriage networks, where P stands for parent
or parental. On the webpage, the authors call it a “toolkit for structural analysis of
genealogical data and kinship and marriage data”. The p-graph is a concept for a
representation of networks, where the vertices are not individuals but intersections
between individuals (as in marriage), or between groups and individuals, where
graph-theoretic cycles and blocks are relevant units of analysis (see also Harary and
White, 2001). Networks can be analyzed using p-graphs with either the PGRAPH

package, or with Pajek software in combination with some utility programs that pre-
analyze the data and convert it to Pajek input format (White, Batagelj, and Mrvar,
1999).

3.2.5 Statistical testing

PermNet (Version 0.94; Tsuji, 1997)
The program PermNet (PERMutation NETworks) contains a set of permutation
tests for social network data. It provides symmetry tests, transitivity tests for real-
valued data, and a triad census test for binary data (cf. NetMiner and the module
ZO of the StOCNET software).
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3.3 Utilities and routines

We mention five software toolkits with utilities available for programming, either in
general software (Excel, Gauss, R/S) or in a common programming language (Java).
The routines developed for Gauss and especially those developed for R are the most
general and complete. The Excel routines are specifically aimed at ethological appli-
cations, and the Java-based libraries of procedures are largely aimed at visualization.

Next to these routines some other data preparation utilities are available. Some
of them (ADJ2NEG and FREEFIX) were already mentioned in section 2.6. Another,
PREPSTAR (Version 1.0; Crouch and Wasserman, 1998) has been developed to per-
form p∗ analyses in SPSS or SAS.

JUNG–Java Library (Version 1.0; White, O’Madadhain, Fisher, and Boey, 2003)
The Java Universal Network/Graph (JUNG) framework is a software library that
provides a common and extendible language for the modeling, analysis, and visual-
ization of data that can be represented as a graph or network. JUNG supports a va-
riety of representations of graphs (e.g., directed, undirected) and the current version
includes algorithms for clustering, decomposition, random graph generation, statis-
tical analysis, and calculating of network distances, flows, and importance measures.
It also provides a visualization framework to construct tools for data exploration.

MatMan–Microsoft Excel (Version 1.0 for windows; Noldus, 2001)
An add-in for Microsoft Excel, MatMan is aimed at performing specific matrix ma-
nipulations, common in ethological research, for sociomatrices, behavioral profile
data, and transition matrices. Furthermore, social dominance and correlation anal-
yses can be performed.

SNA–R-routines for S (Version 0.41; Butts, 2002)
This collection of routines to be used in R or S (‘Carter’s archive’), contains many
well-documented procedures for performing various kinds of social network analy-
ses ranging from general analyses such as mutuality, betweenness or centrality to
specific analyses such as QAP and p∗ analyses, or blockmodeling. It also contains
visualization routines. The R routines can be called from the program Pajek (see
Section 2.3).

SNAP–GAUSS (Version 2.5; Friedkin, 2001)
Like SNA, a collection of network analysis routines that include procedures for calcu-
lating many graph theoretical properties of graphs and nodes, and for fitting social
influence models.
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yFiles–Java library (Version 2.1; yWorks, 2003)
The Java class package yFiles provides efficient and effective visualization algorithms.
It is a class library for viewing, editing, optimizing, layouting, and animating graphs.
Since it is written in Java, yFiles is fit for platform independent applications. It has
a graph viewer and supports many functionalities, like labels for nodes and edges
or multiple views of a graph. Furthermore, yFiles has some routines for exploration
and descriptive analysis of networks (e.g., bipartitions, shortest paths, transitivity).

4 Recommendations

We conclude this section with a summary of the packages presented in Section 2.
We scored the software at 1) functionality, using the earlier-defined categorization of
procedures: data manipulation (data entry was found not to be a problem for any
program), network Visualization, descriptive methods, procedure-based methods,
and statistical methods; 2) support: the availability of a manual and a online help-
function; and 3) user-friendliness. The scores are given in Table 12. A + is used to
indicate that it is good (or at least sufficient), ++ that it is very good or strong, a −
that it has shortcomings, a 0 that it is lacking, and a +− that it is undecided (having
both good and bad parts). We will explain the scores, especially the negative ones,
further below.

Obviously, we try to present an objective, substantiated view, but we admit that
we cannot give a completely unbiased opinion. We also stress that it is impossible
to make a fair comparison between the packages, because their objectives are dif-
ferent, which leads to different functionalities. For instance, the aim of StOCNET

is not to compete with but to be an addition to existing software, and therefore it
contains no procedure based methods. Likewise, STRUCTURE is too old to offer
any visualization.

Therefore, we advise reading the table vertically as well: for instance, if one
is looking for a package with the primary aim to obtain many descriptive network
measures, UCINET or NetMiner would be a good candidate. On the other hand, if
network visualization is an important objective, Pajek and NetMiner are competing
packages, where MultiNet and UCINET (with NetDraw) also give the opportunity for
visual exploration.

In two of the six programs, MultiNet and StOCNET, data manipulation obtained
the score +− because they contain relatively few options. STRUCTURE received a
negative score, because it contains hardly any options for data manipulation.

StOCNET does not have any visualization options, but this is compensated via
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Table 12: Scores for the packages presented in Section 2.

Functionality Support User-
Data Visual. Descr. Proc. Stat. Manual Help friendliness

MultiNet +− + +− + +− +− ++ +
NetMiner ++ ++ ++ ++ +− + + ++
Pajek + ++ + ++ 0 − 0 +−
StOCNET +− 0 +− 0 ++ + + +
STRUCTURE − 0 +− ++ + ++ 0 +−
UCINET ++ +1 ++ ++ +− + + +
1 The program NetDraw for network visualization is distributed with UCINET

export possibilities to NetMiner and Pajek that score very well with respect to visu-
alization.

The scores for the descriptive, procedure-based, and statistical methods, are
indicative of the number of different features. The descriptive methods are rather
sparse in MultiNet, StOCNET, and STRUCTURE. They are most comprehensive in
NetMiner and UCINET. These programs contain many procedure-based methods as
well, whereas STRUCTURE has some unique procedures. StOCNET does not contain
any procedure-based methods, but has many statistical methods, more, and more
advanced, than the other programs. The statistical methods in Pajek are so limited
that they score a 0 (although there is the possibility to call statistical routines in
R). The statistical methods in STRUCTURE are limited as well, but exclusive. The
other three programs do contain a number of – sometimes exclusive – statistical
methods, but they are presented uncritically whereas some warning would definitely
be warranted for the ANOVA procedures, estimation of the p∗ model, and QAP
regression.

In our opinion, the manual of STRUCTURE is the best, since it contains both
good practical information and a theoretical background. The completeness of the
manual shows that it was developed in the pre-internet era, and that it was – and
still is – used for educational purposes. MultiNet’s manual is, at the time of writing,
incomplete, but the program has good, interactive, online help. Pajek’s manual is
so little instructive, that we scored it negatively. Without additional information,
provided to us via the forthcoming book by De Nooy, Mrvar and Batagelj (2002), it
is very difficult to use Pajek to its full extent. The fact that Pajek does not have an
online help function is a further drawback.

We see some connection between the support offered in the various packages
and their authors and development period. Except for NetMiner, the developers
of all packages are or were rather active in the social network analysis community.
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Authors with a social science background (UCINET, STRUCTURE) are very able
and experienced in communicating their methods and incorporating them in social
theories. Packages with authors with a mixed background (both social and math-
ematical/computational; MultiNet, StOCNET) offer less social theory. The more
mathematical orientation of the authors shows in Pajek, where the user is supposed
to know what s/he wants. The most commercial – non-academic – developers of Net-

Miner have been able to profit from the experience of previously developed software
to join completeness and user-friendliness.

The insufficient manual and lack of online help is the reason of the +− score
for Pajek’s user-friendliness. STRUCTURE obtains a +− score because of its age.
We find that it would be worthwhile to upgrade STRUCTURE or to incorporate it
in one of the existing programs. The same applies to GRADAP. With respect to
user-friendliness, NetMiner stands out, because of its interface where visualization,
data, and procedures are integrated.

It remains, however, hard to compare the different packages, as we already
pointed out at the beginning of this section. We leave it to the reader of this
chapter to decide which software to use for the social network analysis s/he wishes
to do.
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