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Brain–Computer Interface (BCI) systems establish a direct commu-
nication channel from the brain to an output device. These systems use
brain signals recorded from the scalp, the surface of the cortex, or
from inside the brain to enable users to control a variety of
applications. BCI systems that bypass conventional motor output
pathways of nerves and muscles can provide novel control options for
paralyzed patients. One classical approach to establish EEG-based
control is to set up a system that is controlled by a specific EEG feature
which is known to be susceptible to conditioning and to let the subjects
learn the voluntary control of that feature. In contrast, the Berlin
Brain–Computer Interface (BBCI) uses well established motor
competencies of its users and a machine learning approach to extract
subject-specific patterns from high-dimensional features optimized for
detecting the user's intent. Thus the long subject training is replaced by
a short calibration measurement (20 min) and machine learning
(1 min). We report results from a study in which 10 subjects, who had
no or little experience with BCI feedback, controlled computer
applications by voluntary imagination of limb movements: these
intentions led to modulations of spontaneous brain activity specifically,
somatotopically matched sensorimotor 7–30 Hz rhythms were dimin-
ished over pericentral cortices. The peak information transfer rate was
above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two,
and above 12 bpm for 3 subjects, while one subject could achieve no
BCI control. Compared to other BCI systems which need longer
subject training to achieve comparable results, we propose that the key
to quick efficiency in the BBCI system is its flexibility due to complex
but physiologically meaningful features and its adaptivity which
respects the enormous inter-subject variability.
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Introduction

The aim of Brain–Computer Interface (BCI) research is to
establish a novel communication system that translates human
intentions–reflected by suitable brain signals–into a control signal
for an output device such as a computer application or a neuro-
prosthesis. According to the definition put forth at the first inter-
national meeting for BCI technology in 1999, a BCI “must not
depend on the brainTs normal output pathways of peripheral nerves
and muscles” (Wolpaw et al., 2000).

There is a huge variety of BCI systems (see Pfurtscheller et al.,
2005; Wolpaw et al., 2002; Kübler et al., 2001; Dornhege et al.,
2007b; Curran and Stokes, 2003). BCI systems relying on
intentional modulations of evoked potentials can typically achieve
higher information transfer rates (ITRs) than systems working on
unstimulated brain signals (cf. Cheng et al., 2002; Kaper and Ritter,
2004). On the other hand, with evoked potential BCIs the user is
constantly confronted with stimuli, which could become exhaustive
after longer usage. Furthermore, some patient groups might not be
able to properly focus their gaze and thus such a system will not be a
reliable means for their communication when visual evoked poten-
tials are employed.

One of the major challenges in BCI research is the huge inter-
subject variability with respect to spatial patterns and spectrotemporal
characteristics of brain signals. In the operant conditioning variant of
BCI, the subject has to learn the self-control of a specific EEG feature
which is hard-wired in the BCI system (see e.g., Elbert et al., 1980;
Rockstroh et al., 1984; Birbaumer et al., 2000). An alternative
approach tries to establish BCI control in the opposite way: while
using much more general features, the system automatically adapts to
the specific brain signals of each user by employing advanced
techniques of machine learning and signal processing (e.g., Müller
et al., 2001; Haykin, 1995; and more specifically with respect to
BCI: Blankertz et al., 2004, 2006c,d; Müller et al., 2003, 2004).

The Graz BCI group introduced the common spatial pattern
(CSP) algorithm (spatial filters that are optimized for the discri-
mination of different condition, cf. Common spatial pattern (CSP)
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analysis) for the use in BCI systems (Ramoser et al., 2000) and
reported in (Guger et al., 2000a) results from a feedback study with a
CSP-based BCI operating on a 27 channel EEG. The feedback study
encompassed 6 sessions on 4 days for each of three subjects that
were experienced with BCI control. Nevertheless the result for two
out of three subjects was at chance level in the first feedback session
and reasonable BCI control was only obtained from the 2nd
feedback session on. The feedback application did not allow to
explore what information transfer rates could be obtained because it
relied on a synchronous design where each binary decision needed
8 s, limiting the highest possible ITR to 7.5 bits per minute (bpm) at a
theoretical accuracy of 100%. In a more recent publication (Krausz
et al., 2003) 4 patients with complete or partial paralysis or paresis of
their lower limbs were trained to operate a variant of the Graz BCI
that uses band power features of only 2 bipolar channels. As
feedback application, a basket game was used in which the subject
controls the horizontal position of a ball that falls downward at
constant speed. The aim in this application is to hit one of two basket
targets at the bottom of the screen. On the second and third day the
maximum ITR of 6–16 runs of 40 trials each for the 4 subjects was
between 3 and 17.2 bpm (mean 9.5±5.9).

A study from theWadsworth BCI group (McFarland et al., 2003)
investigates the influence of trial duration and number of targets on
the ITR in their BCI system that uses operant conditioning for letting
the users learn to modulate the amplitude of sensorimotor rhythms.
Eight subjects (2 patients, one spinal injury at c6 and one cerebral
palsy) trained over several months to operate a BCI application
similar to the basket game described above, but with vertical cursor
control and a variable number of target fields. The average ITR from
8 runs of 20 to 30 trials for the 8 subjects was between 1.8 and
17 bpm (mean 8.5±4.7) at the individual best number of targets. In a
more recent study in cooperation with the BCI group in Tübingen
(Kübler et al., 2005) a similar methodology was successfully used
with 4 patients suffering fromAmyotrophic Lateral Sclerosis (ALS).
This was the first study demonstrating that ALS patients are capable
of voluntarily modulating the amplitude of their sensorimotor
rhythms to control a BCI.

Based on offline results, del Millán et al. (2002) suggest to use a
local neural classifier based on quadratic discriminant analysis for
the machine learning part. Using this system asynchronously in an
online feedback with three classes (left/right-hand motor imagery
and relax with eyes closed) three subjects were able after a few
days of training to achieve an average correct recognition of about
75% whereas the wrong decision rates were below 5%. In del
Millán and Mouriño (2003) it was reported that with this system a
motorized wheelchair and a virtual keyboard could be controlled.
In the latter case trained subjects were able to select a letter every
22 s. In a preliminary study the best subject was reported to be able
to do selections every 7 s. Note that brain signals for one class were
produced by closing the eyes.

Here we demonstrate how an effective and fast BCI performance
can be realized even for untrained subjects by use of modern
machine learning techniques (cf. Algorithms and procedures and
Methodological and technical details).

Materials and methods

Neurophysiology and features

According to the ‘homunculus’ model, as described by Jasper
and Penfield (1949), for each part of the human body there exists a
corresponding region in the primary motor and primary somato-
sensory area of the neocortex. The ‘mapping’ from the body part to
the respective brain areas approximately preserves topography, i.e.,
neighboring parts of the body are represented in neighboring parts
of the cortex. For example, while the feet are located close to the
vertex, the left hand is represented lateralized (by about 6 cm from
the midline) on the right hemisphere and the right hand almost
symmetrically on the left hemisphere.

Macroscopic brain activity during resting wakefulness contains
distinct ‘idle’ rhythms located over various brain areas, e.g., the μ
rhythm can be measured over the pericentral sensorimotor cortices
in the scalp EEG, usually with a frequency of about 10 Hz (Jasper
and Andrews, 1938). Furthermore, in electrocorticographic record-
ings Jasper and Penfield (1949) described a strictly local β rhythm at
about 20 Hz over the human motor cortex. In non-invasive scalp
EEG recordings the 10 Hz μ rhythm is commonly mixed with the
20 Hz-activity. Basically, these rhythms are cortically generated;
while the involvement of a thalamo-cortical pacemaker has been
discussed since the first description of EEG by Berger (1933),
Lopes da Silva (da Silva et al., 1973) showed that cortico-cortical
coherence is larger than thalamo-cortical pointing to a convergence
of subcortical and cortical inputs.

The moment-to-moment amplitude fluctuations of these local
rhythms reflect variable functional states of the underlying neuronal
cortical networks and can be used for brain–computer interfacing.
Specifically, the pericentral μ and β rhythms are diminished, or even
almost completely blocked, by movements of the somatotopically
corresponding body part, independent of their active, passive, or
reflexive origin. Blocking effects are visible bilateral but with a
clear predominance contralateral to the moved limb. This attenua-
tion of brain rhythms is termed event-related desynchronization
(ERD) (see Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller
et al., 2006).

Since a focal ERD can be observed over the motor and/or
sensory cortex even when a subject is only imagining a movement
or sensation in the specific limb, this feature can well be used for
BCI control: the discrimination of the imagination of movements of
left hand vs. right hand vs. foot can be based on the somatotopic
arrangement of the attenuation of the μ and/or β rhythms. To this
end, spatio-spectral filters to improve the classification performance
of the CSP algorithm were suggested (e.g., Lemm et al., 2005).

A complementary EEG feature reflecting imagined or intended
movements is the lateralized Bere-itschaftspotential (readiness
potential, RP), a negative shift of the DC-EEG over the activated
part of the primary motor cortex (Blankertz et al., 2003, 2006a,c).
The RP feature was used in combination with co-localized ERD
features and showed encouraging results in offline BCI classifica-
tion studies (Dornhege et al., 2004a,b, 2007c).

Experimental setup

Ten subjects (all male; 1 left handed; age 26–46 years, all staff
members at the two involved institutions) took part in a series of
feedback experiments. None of the subjects had extensive training
with BCI feedback: two subjects had no prior experience with BCI
feedback, four subjects had one session with (an earlier version of)
BBCI feedback, three subjects had 4 sessions of BBCI feedback
before, and one subject had previously 2 sessions of cursor control
feedback and about 4 sessions of different BBCI feedback. See the
discussion of the influence of the prior feedback experience in
Impact of previous feedback sessions.



541B. Blankertz et al. / NeuroImage 37 (2007) 539–550
Brain activity was recorded with multi-channel EEG amplifiers
(Brain Products GmbH, Germany) using 128 channels (64 for
subjects 7–10) band-pass filtered between 0.05 and 200 Hz and
sampled at 1000 Hz. For all results in this paper, the signals were
subsampled at 100 Hz. Additionally surface EMG at both forearms
and the right leg, as well as horizontal and vertical EOG signals,
were recorded. Those signals were exclusively used to check the
absence of target-related muscle activity or eye movements (see
Investigating the dependency of BCI control). They have not been
used for generating the feedback. Subjects sat in a comfortable
chair with arms placed on armrests. All recordings for one
individual subject were recorded on the same day.

Calibration sessions
All experiments contain a so called calibration session in which

the subjects performed mental motor imagery tasks, guided by
visual command stimuli. Thereby labeled examples of brain activity
can be obtained during the different mental tasks. These recorded
single trials were then used to train a classifier by machine learning
techniques which was applied online in the feedback sessions to
produce a feedback signal for (unlabeled) continuous brain activity.
Note that the ‘calibration sessions’ are only used to generate exam-
ples to calibrate the classifier, not to train the subject.

In the calibration session visual stimuli indicated which of the
following 3 motor imageries the subject should perform: (L) left
hand, (R) right hand, or (F) right foot. Target cues were visible on
the screen for a duration of 3.5 s, interleaved by periods of random
length, 1.75 to 2.25 s, in which the subject could relax.

There were two types of visual stimulation: (1) targets were
indicated by letters appearing at a central fixation cross and (2) a
randomly moving small rhomboid with either its left, right, or
bottom corner filled to indicate left or right hand or foot movement,
respectively. Since the movement of the object was independent
from the indicated targets, target-uncorrelated eye movements are
induced. This way the classifier becomes robust against changes in
the brain signals caused by eyes movements. For seven subjects 2
sessions of both types were recorded, while from the other three
subjects 1 session of type (1) and 3 sessions of type (2) were
recorded. Overall 140 trials for each imagery class have been
recorded.

Feedback sessions
After the calibration sessions were recorded, the experimentor

screened the data to adjust subject-specific parameters of the data
processing methods (see Learning for calibration data and Selection
of hyperparameters). Then he identified the two classes that gave
best discrimination and trained a binary classifier as described in
Algorithms and procedures. The third class was not used for
feedback. In cases where the cross-validation (cf. Validation) pre-
dicted a reasonable performance, the subject continued with three
types of feedback sessions. Two have an asynchronous protocol1,
1 These feedback applications fall between the categories ‘synchronous’
and ‘asynchronous’. While there are visual cues indicating the target, the
time point at which the decision is taken is not fixed beforehand but rather
depends on the brain signals of the user. If the user is in idle state the
classifier output should be small in magnitude such that the cursor stays in
the center and does not actuate a selection. In contrast to feedbacks with
fixed trial length we call this type of feedback ‘asynchronous’ albeit a
systematic evaluation of the idle state feature was not done.
while the last is synchronous. Since most timing details were
individually adapted for each subject, we will here only report the
range in which those changes occurred. In all feedback scenarios, we
arranged the display according to the selected paradigms, in
particular we wanted to make the movement most intuitive for the
subjects. If the selected classes were “right hand” and “right foot”,
then a vertical movement was more intuitive than a horizontal one.
For reasons of legibility, only the setup for the horizontal movement
will be described in the following sections.

Position controlled cursor. The first type of feedback presented
to the subjects consisted of the control of a cursor in one-dimen-
sional (i.e., horizontal) direction. Items on the screen included the
cursor in form of a red cross of approximately 3 cm width, two
targets in form of grey rectangles of 15 cm height and 3 cm width
(one at each lateral side of the screen) and a counter at the top left
corner of the screen, indicating the respective numbers of successful
and unsuccessful trials. In the middle, a light gray rectangle of
20 cm width denoted a designated central area, see Fig. 1.

The display was refreshed at 25 fps, and with every new frame at
time t0, the cursor was updated to a new position (pt0, 0) calculated
from the classifier output (ct)t≤t0, according to the formula

pt0 ¼ s
1
n

Xt0
t¼t0�nþ1

ct � b

 !
; ð1Þ

where scaling factor s, bias b and averaging length n were manually
adjusted during a calibration session. We then restrict the range of
the above expression to the interval [−1, 1] and translated this
interval to horizontal positions on the screen.

The cursor was visible and controllable throughout the whole
run. At the beginning of each trial, the cursor was a black dot and
had to be moved into the central area of the screen (Fig. 1) where
the shape of the cursor changed to a cross. After that the task was
to steer the cursor into the highlighted target by imagining the
corresponding unilateral hand movements.

Once a target (non-target) was hit by the cursor, it was colored
green (or red) to show the success (or failure) of the performance,
and the cursor turned to dot shape again. As long as the cursor had
the dot shape, no selections (neither hits nor misses) could be
made. This strategy prevented unintended multiple activations of
the same target. As an additional information for the subjects, a
1 cm stripe at the outermost section of the targets was colored blue
or gray to indicate whether or not this side was going to be the next
target (preview). Each run consisted of 25 trials of this kind.

Rate controlled cursor. The setup for the second type of
feedback was similar to the previous one, only the control strategy
for the cursor was slightly modified. In this setting, the cursor was
moving in a “relative” fashion, meaning that with every new frame,
the new position pt0 was the old position pt0−1, shifted by an
amount proportional to the classifier output:

pt0 ¼ pt0�1 þ s
1
n

Xt0
t¼t0�nþ1

ct � b

 !
: ð2Þ

In other words, in this setting, the first derivative (i.e., direction and
speed) of the cursor position was controlled rather than its absolute
position.

At the beginning of each trial, the cursor was set to the central
position and was kept fixed for 750–1000 ms before it could start
moving.



Fig. 1. The setup of the feedback session. Left panel—“cursor control”: in this situation, the cursor is active and the right rectangle is marked as the current target.
The stripe on the left side indicates that after the current target, the left rectangle will be highlighted as target (preview). Right panel—“basket game”: the subject
controls the horizontal position of a ball that falls downward at constant speed. The aim is to hit the green colored one of three baskets at the bottom of the screen.
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Basket game. Here the scene consisted of three targets, gray
rectangles at the bottom of the screen of approximately 3 cm height,
and a counter at the upper left of the screen, which showed the
number of successful and unsuccessful trials. The two outer rec-
tangles were smaller than the middle one to account for the fact that
they were easier to hit. In each trial, one of the targets was
highlighted in blue, and the subject was trying to direct a cursor in
the form of a magenta ball into this target. The cursor appeared at
the top of the screen and was held there for 500–750 ms. Then it
was moving down at a fixed rate such that it reached the bottom
1200–3000 ms (according to the subject's choice) after its release.
The subjects were able to control the horizontal position of the
cursor by imagining strategies as explained above. In this manner,
they could try to hit the intended target when the cursor reached the
bottom line. After the completion of a trial, the hit basket was
highlighted green or red, according to the success of the trial. The
next trial began 250 ms after hitting the target.

This feedback was similar to those described by McFarland et al.
(2003) and Krausz et al. (2003) (cf. Introduction) but here, as
mentioned above, we changed the sizes of the targets according to
the difficulty to reach them.

Manual calibration
In our very first feedback experiments we realized that the

initial classifier was behaving suboptimal. Thus we introduced a
calibration phase at the beginning of the feedback sessions in
which the subject controlled the cursor freely and the experimentor
adjusted the bias and the scaling of the classifier (b and s in Eqs.
(1) and (2)). Our investigations show that this adjustment is
needed to account for the different experimental and mental con-
ditions of the more demanding feedback situation when compared
to the calibration session (cf. Krauledat et al., 2006; Shenoy et al.,
2006).

Algorithms and procedures

Machine learning techniques allow to learn from calibration data
optimized parameters such as (spatial and spectral) filter coeffi-
cients, separation of the class distributions, and hyperparameters of
all involved methods which are needed for the online translation
algorithm. Here, some of the hyperparameters that allow to in-
corporate neurophysiological knowledge have been selected semi-
automatically. In this section we give an overview of the following
two processes: (1) learning from calibration data, and (2) trans-
lating online brain signals to a control signal (see Methodological
and technical details for details). For completeness we also summa-
rize the Common Spatial Pattern algorithm, which is an essential
part of (1).

Common spatial pattern (CSP) analysis
The common spatial pattern (CSP) algorithm (Fukunaga, 1990)

is highly successful in calculating spatial filters for detecting ERD/
ERS effects (see Koles and Soong, 1998) and for ERD-based BCIs
(see Guger et al., 2000b) and has been extended to multi-class
problems in (Dornhege et al., 2004a). Given two distributions in a
high-dimensional space, the CSP algorithm finds directions (i.e.,
spatial filters) that maximize variance for one class and that at the
same time minimize variance for the other class. After having
bandpass filtered the EEG signals in the frequency domain of
interest, high or low signal variance reflects a strong, respectively a
weak (attenuated), rhythmic activity. Let us take the example of
discriminating left hand vs. right hand imagery. According to
Neurophysiology and features, if the EEG is first preprocessed in
order to focus on the μ and β band, i.e., bandpass filtered in the
frequency range 7–30 Hz, then a signal projected by a spatial filter
focussing on the left hand area is characterized by a strong motor
rhythm during the imagination of right hand movements (left hand
is in idle state), and by an attenuated motor rhythm if movement of
the left hand is imagined. This can be seen as a simplified
exemplary solution of the optimization criterion of the CSP
algorithm: maximizing variance for the class of right hand trials
and at the same time minimizing variance for left hand trials.
Additionally the CSP algorithm calculates the dual filter that will
focus on the spatial area of the right hand in sensor space.
Moreover a series of orthogonal filters of both types can be
determined.

For the technical details the reader is referred to Fukunaga
(1990), Ramoser et al. (2000), and Lemm et al. (2005). As result the
CSP algorithm outputs a decomposition matrix W and a vector of
corresponding eigenvalues. The interpretation of W is two-fold: the
rows of W are the stationary spatial filters, whereas the columns of
W −1 can be seen as the common spatial patterns, i.e., the time-
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invariant EEG source distribution vectors. Each eigenvalue indi-
cates the importance of the corresponding filter for the discrimina-
tion tasks.

CS patterns can be used to verify neurophysiological plausibility
of the calculated solution, while the filters typically incorporate an
intricate weighting which is needed to project out artifacts and noise
sources and to optimize discriminability (see Fig. 2) The patterns
are much smoother and have a broad focus, while the focus of the
filters is much more localized and either has a bipolar structure or
the focus is surrounded by areas that are weighted weaker but with
the opposite sign. This way, influences from other areas like arti-
facts or non task-relevant fluctuations (ongoing activity resp. noise)
are attenuated.

Recently efficient extensions of CSP for multiclass settings
(Dornhege et al., 2004a) as well as optimized spatio-temporal filter
extensions of CSP have been proposed (Lemm et al., 2005;
Dornhege et al., 2006; Tomioka et al., 2006, in press).

Classification with LDA
The linear discriminant analysis (LDA) is obtained by deriving

the classifier that minimizes the risk of misclassification under the
assumption that the class distributions obey known Gaussian distri-
butions with equal covariances. Denoting the common covariance
matrix by Σ and the class means by μl (l=1, 2) the decision function
of LDA is given by

xi1:5þ 0:5T wM x� 1
2

l1 þ l2ð Þ
� �� �

;

where w=Σ −1(μ2−μ1).

Learning from calibration data

The basic idea is to extract spatial filters that optimize the
discriminability of multi-channel brain signals based on ERD effects
of the (sensori-) motor rhythms, then to calculate the log band power
Fig. 2. The common spatial pattern (CSP) algorithm determines spatial structures w
variance. The patterns illustrate how the presumed sources project to the scalp. The
project the original signals. They resemble the patterns but their intricate weighting
variance. These two CSP filters were calculated from the calibration data of subject
of each type were calculated. Neurophysiologically unplausible pattern/filter pairs
in those surrogate channels and finally to find a separation of the two
classes (mental states) in the feature space of those log band power
values. This process involves several parameters that are indivi-
dually chosen for each subject, as described in Selection of
hyperparameters.

1) From the three available classes, only event markers of the two
classes with better discriminability are retained.

2) The raw EEG time series are band-pass filtered with a
butterworth IIR filter of order 5 (frequency band subject-specific
chosen, see Selection of hyperparameters).

3) Trials are constructed from the filtered EEG signals for each
event marker representing a specific interval relative to the time
point of visual cues, typically 750 to 3500 ms.

4) CSP is used to find 3 spatial filters per class by applying the
algorithm to the trials classwise con-catenated along time. From
those 6 filters some were selected according to the neurophy-
siological plausibility of the corresponding patterns, e.g., when
exhibiting typical somatotopic pericentral foci.

5) Variance was calculated for each of the CSP channels (band
power) and the logarithm was applied to yield a feature vector
for each trial.

6) The LDA classifier was used to find a linear separation between
the mental states. Note that this classification process can in
principle be enhanced by using more complex classifiers (Müller
et al., 2003).

Online translation algorithm
In the online application a new feedback output was calculated

every 40 ms (resp. 4 sample points) per channel. The continuously
incoming EEG signals were processed as follows:

1) The EEG channels were spatially filtered with the CSP filter
matrix W that was determined from the calibration data. The
hich represent the optimal discrimination between two classes with respect to
y can be used to verify neurophysiological plausibility. The filters are used to
is essential to obtain signals that are optimally discriminative with respect to
aa and have been used for feedback. Generally in this study 3 patterns/filters
were discarded from the use in online feedback.



2 We transform band power to dB by applying 10 log10 to it.
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result were 2 to 6 channels, depending on how many CSP filters
were chosen.

2) The 4 new data points per channel were spectrally filtered with
the chosen band-pass filter. The initial conditions of the filter are
set to the final conditions of the filtering of the previous block of
data. Accordingly the result of the online frequency filtering is
the same as the offline forward filtering of the complete signals.

3) From the most recent interval (of given length) the log-variance
was calculated in each CSP channel.

4) Feature vectors are projected perpendicular to the separating
hyperplane of the LDA classifier.

5) The classifier output is scaled and a bias is added (s and b in Eqs.
(1) and (2)).

6) Several consecutive outputs are averaged giving a smoother
control signal (n in Eqs. (1) and (2), subject's choice).

Note that the ordering of spectral and spatial filtering was
changed from the calibration to the apply phase. This is possible due
to the linearity of those operations and considerably reduces com-
puting time, since the number of channels that are to be filtered is
reduced from about 100 (original EEG channels) to at most 6 (CSP
channels).

Methodological and technical details

Validation
A validation was used to estimate the generalization error of the

classifier with respect to the data of the calibration sessions. To this
end we used a 3 times 5-fold cross-validation, i.e., for 3 repetitions
all samples were partitioned into 5 parts, each of which was used as
test set once, while the other 4 were used for training. Thus, 15 test
set errors were determined and averaged. Since the CSP algorithm
uses class label information, the calculation of the CSP filters has to
be performed within the cross-validation on samples of the res-
pective training set and the spatial filters are applied to the samples
of the test set. That means for a 3 times 5-fold cross-validation the
CSP algorithm is executed 15 times. The estimated generalization
errors of all 3 binary class combinations are used to select the best
discriminable pair of imagery conditions. In debatable cases also
the subject was asked what he would rather use for control
paradigm.

Selection of hyperparameters
The selection of the parameters in the calibration procedure (cf.

Learning for calibration data) was done semi-automatically based
on class-wise averaged plots of the spectra, of the ERD curves and
of the respective r2-values. The r2-coefficient reflects how much of
the variance in the distribution of all samples is explained by the
class affiliation. It is the squared bi-serial correlation coefficient r:

Xr :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþd N�p

Nþ þ N�
meanðX�Þ �meanðXþÞ

stdðXþ [ X�Þ ; Xr2 :¼ X 2
r

where X + and X − are the samples of class 1 and 2, respectively, and
N + and N − are the numbers of samples (see also Dornhege et al.,
2007c; Müller et al., 2004). Whenever the sign of the difference was
important, we multiplied the r2-value with the sign of the r-value
(‘signed r 2-value’). Additionally the generalization error (cf.
Validation) was used as indicator for good parameter values. A
visualization of the CSP analysis as shown in Fig. 2 was used to
decide which CSP filters are to be used and which are to be
dropped.

Selection of parameters in the feedback application
At the very beginning of the feedback sessions an exploratory

phase “position controlled cursor” was performed during which
experimenter and subject found out interactively which values for
the meta-parameters of the feedback application were most con-
venient for the subject. In the first step the bias and the scaling of the
classifier (b and s in Eqs. (1) and (2)) were fine tuned. The length of
the window used in online classification was typically chosen
between 500 and 1000 ms and the number of averaged classifier
outputs was left at the default value 8. Subject aa wanted to have a
more immediate feedback and chose 300 ms and 5 (effectively used
for one classifier output were 5 windows of length 300 ms with a
step size of 40 ms, i.e., an interval of 460 ms length). For the basket
feedback, subjects could choose how fast the ball was falling down.

Results

For three subjects the combination left vs. right was found
optimal, for four subjects left vs. foot and for the remaining two
subjects right vs. foot (the criterium for selecting a binary pair of
tasks was the discriminability of the corresponding classes of brain
signals which have been acquired in the calibration measurement,
see Feedback sessions and Validation). For one subject no sufficient
separation was achieved (see Investigation the failure).

Neurophysiological outcome

The neurophysiological properties of the EEG of the successful
subjects are summarized in Fig. 3. The brain signals of subject au in
whom no sufficiently discriminable properties were found are
discussed in Investigation the failure.

The spectra shown in the top row of Fig. 3 together with the
color coded r2-values have been used to select for each subject a
frequency band (gray shading in the spectra) that exhibits good
discrimination between two motor imagery tasks. This includes for
all nine subjects the μ-band around 10 Hz, and extends up to the
higher β-band for 6/9 subjects, thereby implementing an individu-
ally optimized passband for every subject. The second row shows
the average amplitude envelope of that frequency band with 0 being
the time point of the command stimulus presentation in the calib-
ration measurement. These curves demonstrate the ERD/ERS that
was caused by the ensuing motor imagery. Spectra and amplitude
envelope curves were calculated from that Laplacian filtered chan-
nel that gave highest r2-values for spectral differences. All these
channels were found at the ‘classical’ topographic positions over
pericentral hand or foot motor representations, notably with slight
but significant individual deviations, e.g., for hand movements,
from the standard 10–20 positions C3/4 to adjacent non-standard
positions CP4 (subject av) or CCP5 (subject aa). This need for
tailoring an individually optimized spatial information sampling
was further corroborated by exploiting the full data from the 128-
channel EEG imaging: these scalp maps reveal the spatial
distribution of log band power2 within the chosen frequency band
for the two classes that were chosen to train the classifier. The top
scalp map series (row 3) shows the log band power averaged over



Fig. 3. The first row displays the averaged spectra of the two motor imagery tasks (red: left hand, green: right hand; blue: right foot) in the calibration meas ement that have been used to train the classifier. The r2-
values of the difference between those conditions are color coded and the frequency band that as been chosen is shaded gray. The second row shows the a erage amplitude envelope of that frequency band with 0
being the time point of stimulus presentation in the calibration measurement. The top scalp maps (row 3) show the log power within the chosen frequency ba d averaged over the whole calibration measurement. The
fourth and fifth row display the log band power difference topographies of the particular motor imagery tasks (indicated by L, R, or F, respectively) minu the global average shown in row 3. The bottom row (6)
displays the r2-values of the difference (row 4 minus row 5) between the individually chosen motor imagery tasks as scalp map.
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the whole calibration measurement. Notably, this is not a rest
condition, rather it serves as reference for the specific imagery-
related modulations in the calibration measurement (the pauses
between motor imagery intervals were too short for having
examples of a true rest condition). The fourth and fifth rows show
the log band power during the execution of the two motor imagery
tasks relative to the reference in row 3. The respective imagery class
is indicated by the juxtaposed letters L, R, or F indicating left/right
hand, or foot motor imagery, respectively. The bottom row (6)
displays the signed r2-values of the difference between the two
chosen motor imagery tasks as scalp map. The difference is
calculated first class (fourth row) minus second class (fifth row),
i.e., green indicates more power in the first condition than in the
second condition while magenta indicates the opposite relation.
Whether, say, magenta coloring is caused by a desynchronization in
the first condition or a synchronization in the second condition, or a
combination of both cannot be decided from those maps.

The topographies of the reference condition (top scalp maps,
row 3) look quite similar for all subjects with a dominating occi-
pital/parietal a rhythm. For the motor imagery conditions we essen-
tially expected two effects: regularly, an ERD over the sensorimotor
area corresponding to the limb for which motor imagery was per-
formed (Pfurtscheller and Lopes da Silva, 1999), and, potentially,
an ERS over flanking sensorimotor areas, possibly reflecting an
‘surround inhibition’ enhancing focal cortical activation (see
Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2006). With
respect to imagination of hand movements, most subjects exhibit an
ERD over the contralateral hand area. In subject av the ERD is also
present ipsilaterally. Subjects zv and cv show also an ERS over the
foot area during left hand imagery. Conspicuously, for foot motor
imagery mainly an ERS over the hand areas is observed, and only
2/6 subjects (zv, cv) exhibited also a relative ERD over the foot area.
This is further evidence for the necessity to tailor individually
classifiers also with respect to textbook expectations of ERD/ERS
Fig. 4. Left: scalp topographies for subjects aw and cv, one of the selected CSP filte
for the difference between the two classes below. These plots exemplary show for tw
compared to the best Laplacian filtered channel substantially (cf. Fig. 3).
physiology, as implemented in the adaptive BBCI approach which
does not enforce a priori hypotheses on the direction of power
changes in the spectrally optimized passbands. The overall im-
portance of these co-effective optimization steps becomes evident
when noting that the relative difference during motor imagery
compared to the reference is smaller by about factor 10 than the log
band power during the reference condition.

An important result is that the r 2-topographies which display
those areas that significantly discriminate the two motor imagery
conditions are very clearly restricted to the involved areas of the
sensorimotor cortices. Only for subject aa the area showing the
ERD during right hand imagery extends unexpectedly to occipital
regions. Nevertheless, the CSP filters that have been identified for
this subject through the adaptive BBCI approach are exclusively
focused on sensorimotor areas which provide the critical informa-
tion for the differential motor aspect of the imagery task, as shown
in Fig. 2.

Fig. 4 demonstrates that the optimized CSP filters enhance the
discriminability of the brain signals. For subjects aw and cv, one of
the selected CSP filters is displayed as scalp map. Plots on the right
show the spectra calculated from CSP filtered brain signals.

For subject aw the filter extracts the signal from the senso-
rimotor area of the right hand and the corresponding spectrum
indicates an ERD for right hand and an ERS for foot motor imagery
(cf. also Fig. 3, row 2). Note that not only the peak r2-value is
increased from 0.560 (best Laplacian filtered channel, cf. Fig. 3) to
0.835, but also the non-discriminative peak at 9 Hz is filtered out
almost completely. For subject cv the filter focuses on the foot area
and the corresponding spectrum indicates an ERD for foot and an
ERS for left hand motor imagery (cf. also Fig. 3, row 2). Here the
peak r 2-value was increased from 0.251 to 0.399.

For each subject, from 2 up to 6 CSP filters were selected. A
linear classifier then combines the log band power estimates in the
CSP filtered channels to a one-dimensional output signal. Fig. 2
rs. Right: spectra for the spatially filtered signals with color coded r2-values
o subjects that CSP filter improves the discriminability of the two conditions



Table 1
Information transfer rates (ITR) obtained in the feedback sessions measured
in bits per minute as obtained by Shannon's formula

Subject/
cls

Training
acc [%]

Position
controlled
cursor

Rate controlled
cursor

Basket game

Overall Peak Overall Peak Overall Peak

zq: LR 95.2 9.4 18.3 17.8 23.4 0.3 0.9
ay: LR 97.6 13.4 21.1 22.6 31.5 16.4 35.0
aa: LR 78.2 8.9 15.5 17.4 37.1 6.6 9.7
zv: LF 91.7 4.4 6.0 4.0 8.8 0.9 2.7
cv: LF 88.9 5.0 8.7 9.9 14.4 0.3 0.9
al: LF 98.0 12.7 20.3 24.4 35.4 9.6 16.1
av: LF 78.1 7.9 13.1 9.0 24.5 6.0 8.8
aw: RF 95.4 7.1 15.1 5.9 11.0 2.6 5.5
zk: RF 96.6 4.2 9.1 4.6 12.7 1.2 3.7
au: – 64.6 – – – – – –

Mean 88.4 8.1 14.1 12.8 22.1 4.9 9.3

For each feedback session the first column (‘overall’) reports the average
ITR of all runs, while the second column (‘peak’) reports the ITR of the best
run. Subject au did not achieve BCI control (not used for calculating the
mean). For the other 9 subjects the two letter code after the subject number
indicates which movement imagery classes have been used for feedback.
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shows for subject aa the selected filters. In Fig. 5 the corres-
ponding classifier output signal is plotted averaged classwise over
all trials of the calibration measurement. Note that this signal is
much smoother and shows better discrimination than the
corresponding envelope curve from the best Laplacian filtered
channel (cf. Fig. 3).

The paper (Pfurtscheller et al., 1999) reports in a visually cued
motor imagery paradigm similar to the one used here an early
discriminatory information. In two subjects discrimination was
significant about 500 ms and in one subject as early as 250 ms after
cue presentation. A more detailed analysis revealed that in this
subject the very early discrimination was based on short-lasting β
bursts localized over the ipsilateral hand area. A detailed analysis of
the early period after cue presentation in our data showed for several
subjects significant discrimination about 500 ms after cue
presentation but these were in none of the subjects owed to bursts
in the β band.

Feedback performance

Each feedback session consisted of several runs with 25 targets
each. Between two successive runs there was a short break. The
number of runs performed were different for each subject and
feedback. The subjects performed 6 to 8 runs of position controlled
cursor, 8 runs of rate controlled cursor, and between 4 and 9 runs of
the basket game. As performance measure, Wolpaw et al. (2000)
suggested the information transfer rate, a measure based on
information theory: the interface is modeled as a communication
channel with noise (classification error) where the transmitter (the
human) has to add redundancy such that a received decision can be
achieved with an arbitrarily small probability of errors. With the
confusion matrix P=(pi, j)i,j=1,…,N ( pi, j describes the probability
to receive j while i was desired) the formula for the ITR per

decision is given by Id ¼ log2N þ 1
N
Ai; jpi; jlog2 pi; j. Consequently

the ITR per time is defined by Iw fId with f as decision rate. For

simplification we assume that pi,i=p and pi; j ¼ 1� p
N � 1

for all i, j.

Then we get Id ¼ log2N þ plog2pþ 1� pð Þlog2
1� p
N � 1

: Note that

the assumption pij=pji(i≠ j) is problematic for the basket feedback,
since neighboring targets are more likely to be hit accidentally.
However, an estimation of the confusion matrix based on the given
basket feedback data is too imprecise so that we prefer to use the
simplification with a more robust estimation of the classification
accuracy.
Fig. 5. Output signal averaged classwise over all trials of the calibration
measurement for subject aa. The output is the linear combination (calculated
by an LDA classifier) of the log band power estimates in the two channels
obtained from the CSP filters which are displayed in Fig. 2.
Table 1 summarizes the information transfer rates that were
obtained by the 9 successful subjects in the three feedback
sessions. Highest ITRs were obtained in the 1D rate controlled
cursor scenario.

One point that is to our knowledge special about the BBCI is that
it can be operated at a high decision speed, not only theoretically,
but also in practice. In the position controlled cursor, the average
trial duration was 3.9±1.4 s (intra-subject averages range 2.1–6.3
s), and in rate controlled cursor it was 2.8±0.8 s (intra-subject
averages range 1.7–3.8 s). In the basket feedback the trial duration
is constant (synchronous protocol) but was individually selected by
each subject with an average of 3.1±0.7 (range 2.1–4.0 s). As trial
duration we count the whole trial-to-trial interval including the
break after target hit and before the start of the next trial. The fastest
subject was aa which performed at an average speed of one decision
every 1.7 s in the rate controlled cursor feedback. The most reliable
performance was achieved by subject al: only 2% of the total 200
trials in the relative cursor control were misclassified at an average
speed of one decision per 2.1 s.

Impact of previous feedback sessions

We claim that the BBCI approach can start in principle without
subject training at an instantaneously high level of efficiency. To
this end we engaged staff members as subjects in this study who
were available for serial recording sessions: Thus, most subjects had
one or more sessions of BBCI feedback that were also used to
develop and stepwise optimize the system with on-line experiments
before the systematic study reported in full here. Importantly, we
can demonstrate that these repeated encounters with the BBCI,
which might be expected to convey ‘training’ effects, only had a
minor influence on performance. While we cannot compare
feedback performances directly since the system was in develop-
ment over the preceding sessions, with different kinds of feedback
having been tested and continuously optimized, we could utilize the



Fig. 6. Classification accuracy by cross-validation of the calibration
measurements of the current study (‘session N’ of the full study reported
here is marked by crosses) and of calibration measurements of previous BCI
sessions (if any).
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classification accuracy in the calibration measurements of previous
sessions for comparison with the present study in order to gain
insight into a possible shaping of brain responses by BBCI
experiences (cf. Fig. 6). For most subjects no significant trend over
time is discernible. Data of subjects aa and av could be discri-
minated even slightly worse in the last session reported here. Note,
however, that the feedback performance of these subjects was quite
well (cf. Table 1). Subject zk performed also in several sessions with
a different feedback system which are not shown here (data were
not available for analysis).

Investigating the failure

In subject au no features were found that enabled a reliable
discrimination between any of the three motor imagery conditions.
The spectra and log band power topography of the whole
calibration measurement, which is shown in Fig. 7, does not reveal
any significant differences when compared to the successful BCI
subjects in Fig. 3, in particular no general slowing indicative of
potential vigilance problems, or focal slowings related to hitherto
unknown regional dysfunctions. However, the spectra from Lap-
lacian filtered channels over sensorimotor areas exhibit almost no
peak in the alpha or beta frequency range (cf. Fig. 7). Thus, no
sensorimotor idle rhythm was detectable in scalp EEG that could
undergo desynchronization during motor imagery. After recogniz-
ing the failure of imagery-based BCI in this subject, we added a
second control calibration measurement on the same day, but now
with executed movements. These recordings gave results indis-
tinguishable from the imagery condition (data not shown).
Fig. 7. Left: log band power topography averaged over the calibration measurement
Laplacian filtered channels over sensori motor areas. Compared to the successful s
The low r2-values show that no discriminatory information is found with respect
Therefore it is likely that the BCI failure in this subject was not
related to an unfavorable mental strategy (e.g., visual instead of
kinesthetic; see Neuper et al., 2005), but rather that the idio-
syncratic properties of the sensorimotor brain rhythms (or what is
discernible of them in scalp EEG) is unsuitable for ERD/ERS-
based BCI approaches.

The problem of ‘BCI illiteracy’ is important and challenging.
Since this phenomenon is reported from all BCI laboratories it
seems not be a problem of data analysis but rather inherent in the
neurophysiological properties of the EEG in some subjects. An
investigation of this issue will require a large experimental approach
which is beyond the scope of this study.

Investigating the dependency of BCI control

It is in principle possible to voluntarily modulate sensorimotor
rhythms without concurrent EMG activity (cf. Vaughan et al.,
1998). Nevertheless it has to be checked for every BCI experiment
involving healthy subjects. For this reason we always record EMG
signals even though they are not used in the online system. On one
hand we investigated classwise averaged spectra, their statistical
significant differences, and the scalp distributions and time courses
of the energy of the μ and β rhythm. The results substantiated that
differences of the motor imagery classes indeed were located in
sensorimotor cortices and had the typical time courses (except for
subject au in whom no consistent differences were found). On the
other hand we compared how much variance of the classifier output
and how much variance of the EMG signals can be explained by the
target class. Much in the spirit of Vaughan et al. (1998), we made
the following analysis using the squared bi-serial correlation
coefficient r2 (see Methodological and technical details). The r2-
value was calculated for the classifier output and for the band-pass
filtered and rectified EMG signals of the feedback sessions. Then
the maximum of those time series was determined resulting in one
r2-value per subject and feedback session for EMG resp. for the BCI
classifier signal. The r2 for EMG was in the range 0.01 to 0.08
(mean 0.03±0.02) which is very low compared to the r2 for the
BCI classifier signal which was in the range 0.20 to 0.79 (mean
0.46±0.16). The fact that the BBCI works without being dependent
on eye movements or visual input was additionally verified by
letting two subjects control the BBCI with closed eyes (targets
provided acoustically) which resulted in a comparable performance
as in the closed loop feedback (100% hits for subject al and 96% hits
for subject ay). An important advantage is that when using the BBCI
the subject is free to scan the visual environment by exploratory eye
movements without diminishing the BBCI efficiency.
of subject au. Right: spectra during left vs. right hand motor imagery in three
ubjects almost no peak in the alpha or in the beta frequency range is visible.
to band power.
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Discussion

The Berlin Brain–Computer Interface makes use of a machine
learning approach towards BCI. Working with high dimensional,
complex features obtained from 128 channel EEG allows the
system a distinct flexibility for adapting to the individual charac-
teristics of each userTs brain. The result from a feedback study with
10 subjects demonstrates that the BBCI system (1) robustly
transfers the discrimination of mental states from the calibration
to the feedback sessions, (2) allows a very fast switching between
mental states, and (3) provides reliable feedback directly after a
short calibration measurement and machine learning without the
need that the subject adapts to the system (all at high information
transfer rates, see Table 1).

Although this study involving 10 subjects gives a clear indication
of the qualities of the proposed system, extended studies need to be
performed to investigate how general they are with respect to
different groups of subjects. It is of particular interest to verify how
BBCI works for paralyzed patients. A positive result was obtained
by Kübler et al. (2005) where it has been demonstrated that ALS
patients can indeed operate a BCI by the voluntary control of
sensorimotor rhythms, which is a requirement for the direct transfer
of the proposed system to patient use. A crucial open issue is, how
the BBCI feature of minimal subject training transfers to patients.

Other recent BBCI lines of research comprise (a) mental
typewriter experiments (Müller and Blankertz, 2006; Blankertz et
al., 2006b), (b) the online use of the error potential, (c) investigation
of synchronization features that capture dynamic interactions of
brain areas (Meinecke et al., 2005; Nolte et al., 2006) for BCI, and
(d) general real-time single-trial EEG analysis in more natural
paradigms, e.g., in driving situations (Dornhege et al., 2007a).

Our future studies will strive for 2D cursor control and robot arm
control (Popescu et al., 2006), still maintaining our philosophy of
minimal or no subject training and non-invasiveness.
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