
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 1091–1103
Location API 2.0 for J2ME – A new standard in location for
Java-enabled mobile phones

Sean J. Barbeau a,*, Miguel A. Labrador b, Philip L. Winters a,
Rafael Pérez b, Nevine Labib Georggi a

a Center for Urban Transportation Research, University of South Florida 4202 E. Fowler Avenue CUT100 Tampa, FL 33620, USA
b Department of Computer Science and Engineering, University of South Florida 4202 E. Fowler Ave. ENB108 Tampa, FL 33620, USA

Available online 31 January 2008
Abstract

Key aspects in realizing the maximum potential of advanced Location-Based Services (LBS) are the standardization and cross-plat-
form availability of an Application Programming Interface (API) for mobile phones that allows access to real-time location information.
To shorten the development time of advanced LBS, such an API should also provide essential features such as map user interfaces, geo-
coding, and navigation to be used as building blocks in the context of larger mobile applications. Using these available services, appli-
cation developers can focus on building innovative location-aware applications rather than re-creating existing services. This article’s
main goals are to emphasize the importance of such an API and to describe the Location API for Java 2 Micro Edition (J2ME). This
description includes the main features of the current ‘‘JSR179-Location API v1.0” as well as the significant enhancements and new ser-
vices included in the development of ‘‘JSR293-Location API v2.0.” These new features, illustrated using coding examples, will help soft-
ware developers create next-generation location-aware J2ME applications.
Published by Elsevier B.V.

Keywords: Location based services; Mobile phone; Standard; Application programming interface; Java; J2ME; JSR179; JSR293
1. Introduction

The availability and pervasiveness of powerful mobile
phones along with advances in software development plat-
forms and communication networks promise to change the
way we receive and process information. Once large, awk-
ward devices owned only by the wealthy, mobile phones
are now becoming accessible to the majority of the world.
In 2007, global mobile phone use will hit a record 3.25 bil-
lion users, which is over half the world’s population [1].
Continued escalation is being driven by growth in emerging
markets such as China, India, and Africa. In established
markets such as the United States, Europe, and Japan,
innovative mobile phone applications that promise to rev-
0140-3664/$ - see front matter Published by Elsevier B.V.

doi:10.1016/j.comcom.2008.01.045

* Corresponding author. Tel.: +1 813 974 7208; fax: +1 813 974 5168.
E-mail addresses: barbeau@cutr.usf.edu (S.J. Barbeau), labrador@cse.

usf.edu (M.A. Labrador), winters@cutr.usf.edu (P.L. Winters), perez@
cse.usf.edu (R. Pérez), georggi@cutr.usf.edu (N.L. Georggi).
olutionize the future seem to be emerging daily. However,
ubiquitous access to real-time data threatens to put mobile
users into information overload. Subscription-based ser-
vices push out messages that may be insignificant in the
context of the user’s current position, such as traffic alerts
about a local highway when the user is out of town. Loca-
tion-Based Services (LBS) will likely play an important role
in filtering down the deluge of information to relevant
items based on real-time or historical location data as well
as the relationship to the position of other users or places
connected to the Internet. Additionally, LBS are making
new applications possible, such as location-tagged photos,
location-based social networking, and personalized naviga-
tion for transit users or pedestrians.

Due to the important role LBS will serve in future soft-
ware systems, global commercial demand of such services
continues to skyrocket. Market research confirms that the
world population of global positioning system (GPS)-
enabled location-aware services subscribers will grow from

mailto:barbeau@cutr.usf.edu
mailto:labrador@cse. usf.edu
mailto:labrador@cse. usf.edu
mailto:winters@cutr.usf.edu
mailto:perez@ cse.usf.edu
mailto:perez@ cse.usf.edu
mailto:georggi@cutr.usf.edu

1092 S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103
12 million in 2006 to a projected 315 million in 2011 with
North American growth reaching 20 million users up from
500,000 users in 2006 [2,3]. The software engineering indus-
try must be properly prepared to develop effective mobile
location-aware applications to serve this growing market.

The many different device manufacturers and wireless
carriers involved in the mobile software development pro-
cess can create a significant barrier to entry for software
engineers new to mobile development. The application
developer has the option to utilize multiple programming
languages, many of which contain features restricted to cer-
tain operating systems. Therefore, an application may
work well on one mobile phone, but must be re-created if
it is to run on other unsupported models.

A cross-platform language that has emerged on different
handsets from many manufacturers and wireless carriers is
Java 2 Micro Edition (J2ME) [4]. J2ME emulates the cross-
platform nature of its desktop (Java 2 Standard Edition)
and server (Java 2 Enterprise Edition) counterparts
through the implementation of a subset of the Java pro-
gramming language and libraries on mobile devices. While
not a perfect ‘‘write-once-run-anywhere” solution, J2ME is
not restricted to a single chipset or operating system. J2ME
applications can run on any ‘‘Java-enabled” mobile device
without substantial changes to the code or structure of the
application. Additionally, since many traditional applica-
tion programmers are familiar with the Java language,
the barrier of learning a new language specific to mobile
development is removed. These features have increased
the popularity of J2ME and have pushed it to the forefront
of mobile application development.

An important task for software engineers new to loca-
tion-aware application development is to understand how
to create software that can execute on a mobile phone
and access real-time device-location information. Since
there are currently over 1 billion Java-enabled mobile
phones in the marketplace, understanding how to access
location data through J2ME applications is critical to the
future of LBS [5]. This article discusses the features of a
new J2ME software standard, ‘‘JSR293-Location API
2.0” that will help LBS application developers create
next-generation location-aware J2ME applications.

2. The J2ME-Location API – How it differs from other

‘‘Location’’ standards

The sheer number of location-related standards can be
overwhelming to software engineers. Several popular stan-
dards fall under the OpenGIS Specifications [6] as defined
by the Open Geospatial Consortium, Inc. (OGC). Geog-
raphy Markup Language (GML) [7] is an XML-based
markup language for geographic data such as latitude,
longitude, and altitude. Another standard defined under
OpenGIS is Location Service (OpenLS) [8], which is a
protocol that defines how location information may be
requested and returned from a location data repository
such as a database. These standards may be useful for
the developer when persisting or transferring location
data, but are secondary in importance for developers
interested in obtaining real-time location data from a
mobile phone. Other standards, such as the European
Telecommunications Standards Institute (ESTI)’s ‘‘GSM
03.71: Location Services (LCS)” [9] and the 3rd Genera-
tion Partnership Project (3GPP)’s ‘‘TS 22.071: Location
Services (LCS)” and ‘‘TS 23.171: Functional stage 2
description of location services in UMTS” describe how
location is calculated for handsets and handled internally
for a wireless carrier’s network and concern mainly tele-
communications engineers, not the common software
developer. Additional standards exist for ‘‘network-initi-
ated” location requests, or a method of using web appli-
cations to query a wireless carrier’s location server to
retrieve a mobile device’s position. These protocols
include the Open Mobile Alliance (OMA) Location
Working Group’s Mobile Location Protocol (MLP) [10]
as well as a set of telecommunication web services known
as Parlay X [11]. These ‘‘network-initiated” requests do
not require any software to be installed on the device,
but also have many limitations including a restriction
on the refresh rate of new location data per device, the
number of phones that can be queried simultaneously,
the characteristics of location-related data (e.g. velocity,
heading, etc.), and strict access control by the wireless
carrier. Therefore, while useful for some applications, net-
work-initiated location requests are subject to many limi-
tations and are unusable for advanced location-aware
applications such as real-time navigation.

The above standards should not be confused with
‘‘handset-initiated” location requests, or methods that
request real-time location data inside software running on
a mobile device. The majority of advanced mobile loca-
tion-aware applications are driven by the ability to pro-
grammatically retrieve real-time location data from the
local device. Immediate access to location information
allows the handset software to work autonomously from
any application server with an extremely low latency
between the position calculation and action taken by the
software on the device. Handset-initiated APIs also allow
the software developer greater control over properties such
as the frequency of position re-calculations or characteris-
tics of the data returned (e.g. velocity, heading, etc.) The
standardization of this type of on-device API is the focus
of this paper.

Accessing location information from software running
on a mobile device has changed significantly over the last
decade. In the past, location-aware applications were cre-
ated by tethering a stand-alone Global Positioning System
(GPS) device to a laptop or Personal Digital Assistant
(PDA). The GPS device would then stream strings format-
ted according to a standard, such as National Marine Elec-
tronics Association (NMEA) 0183 [12], over a serial
connection, which could be implemented over a cable or
wirelessly via BluetoothTM. The location-aware software
application was responsible for listening for these

S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103 1093
‘‘sentences” and parsing the data to yield information such
as the current latitude, longitude, and altitude.

New mobile phones with embedded GPS chips and car-
rier-based localization systems have changed the way loca-
tion information is obtained and increased the complexity
of the procedure. For example, Assisted GPS (A-GPS)
retrieves data wirelessly from a server that is used to lessen
the time required to calculate a position. Alternate posi-
tioning mechanisms such as trilateration based on cellular
signals can also be used to calculate the position of the
device when GPS is not available. In addition, final posi-
tion calculation can now take place on the device or on a
server in the network. To utilize these advanced positioning
technologies, software applications must provide certain
information to the mobile device such as the requested fre-
quency of updates, requested type of positioning technol-
ogy, and any other parameters required to provision
these technologies. Therefore, modern LBS applications
require more interaction with the device than their tradi-
tional autonomous GPS-driven counterparts. Since this
interaction must be accessible from software running on
the mobile phone, this functionality is exposed through
an API to make the underlying complexity transparent to
the 3rd party software developer.

As J2ME location-enabled mobile phones began to
evolve, it soon became evident that simple, interactive,
standardized programmatic access to real-time location
information on the device would be necessary. Fortunately,
J2ME provides a method for continuous improvement of
the J2ME platform through the Java Community Process
(JCP). Any JCP member, including device manufacturers
and wireless carriers, can submit a Java Specification
Request (JSR) which outlines the need for an additional
optional feature, or API, in the J2ME environment. If
other JCP members agree that this JSR is needed, an expert
group is then formed to create a specification. As long as a
mobile software developer uses J2ME APIs defined by
JSRs, the application should run seamlessly across any
J2ME platform that fully supports that particular JSR.
Following this process, in 2002 Nokia proposed the addi-
tion of ‘‘JSR179: Location API for J2ME” [13] that would
allow J2ME applications to utilize a standardized interface
to access location data from the device. An expert group
including IBM, Nokia, Symbian, Intel, Motorola, Sony-
Ericsson, ESRI, Sun Microsystems, Inc. and others deliber-
ated on the standard and released the final version in
September 2003.

3. JSR179 – Location API v1.0

JSR179 allows standardized access for J2ME applica-
tions to location data that represents the real-time position
of the mobile phone. JSR179 can be compared against sim-
ilar J2ME APIs including Motorola’s OEM Position API
[14] for integrated Digital Enhanced Network (iDEN)
devices as well as Qualcomm’s Java Application Extensions
(QJAE) API [15] for their Code Division Multiple Access
(CDMA) devices. However, JSR179 is the only standard-
ized J2ME ‘‘location-related” API that works across differ-
ent devices, chipsets, and wireless carriers. Both Motorola’s
Position API and QJAE are proprietary in format and will
only work on Motorola iDEN devices and Qualcomm
CDMA devices, respectively, and therefore fall into the
‘‘Proprietary APIs” section of the J2ME architecture
shown in Fig. 1. A J2ME application utilizing JSR179 to
access location information should require few changes to
execute across different manufacturers’ devices or wireless
carriers’ networks. As shown in Fig. 1, JSR179 is an
optional API in the J2ME architecture and will only be
supported on devices with access to positioning technolo-
gies such as GPS.

JSR179 can also be compared to the proprietary loca-
tion API available on Google’s new Android platform
[16]. Android, an open-source software stack based on
Linux, is expected to span several mobile device and chip-
set manufacturers, and is therefore similar in concept to
J2ME. A main strength of Android is its support for mod-
ular service-oriented applications and inter-application
communication (capabilities also planned for the J2ME
platform in MIDP 3 [17] and OSGi [18]). However, since
Android is new to the mobile industry and does not yet
exist on any commercially available mobile phones, it is
not nearly as widespread or as generally accepted as
J2ME. Android applications are written using Java,
although Android APIs are proprietary in nature and do
not conform to J2ME standards. For example, Android’s
proprietary location API is very similar in functionality
to JSR179 but does not conform to the JSR179 specifica-
tion. Technical and political issues will dictate how wide-
spread and accepted Android becomes and therefore
more time is needed to see if it will be a worthwhile plat-
form for mobile application development. Currently
J2ME remains the accepted standardized platform for Java
development on mobile devices and JSR179 remains the
only standardized location API on the J2ME platform.

3.1. Criteria, LocationProvider, and Location

JSR179 is driven by a software object referred to as a
LocationProvider, which is the source of location data for
the application. Additionally, all interactions with the
underlying technology that provides location data are han-
dled through this object. Since a mobile phone may
support multiple types of positioning technology (e.g. A-
GPS, cellular signal trilateration, or cellular base station
ID), multiple LocationProviders may exist. Criteria speci-
fied by the application indicate what type of LocationPro-

vider is required to meet the application’s needs. For
example, a navigation application may require highly pre-
cise positioning data, it may require speed and course
information, and it may allow some kind of cost to be
involved (e.g. cost to access the network for A-GPS assist
data). A LocationProvider with this type of description
would be obtained through the following code:

Criteria criteria = new Criteria();

criteria.setHorizontalAccuracy(30);//Indicate that required estimated accuracy is 30 meters

criteria.setSpeedAndCourseRequired(true);//Indicate that speed and course are required

criteria.setCostAllowed(true);//Indicate that cost is allowed

LocationProvider lp = LocationProvider.getInstance(criteria);//Request a LocationProvider that meets these Criteria

1094 S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103
The mobile phone will return a LocationProvider that
typically is able to meet these criteria, or null if a Location-

Provider meeting these criteria does not exist. This process
allows the mobile phone to return the ‘‘best” positioning
technology based on the application’s needs. Therefore, if
a weather information application has a horizontal accu-
racy requirement of 500 m, very coarse location informa-
tion may be sufficient. In this case, a mobile phone could
quickly return the location of the cellular base station’s
coverage area, or Cell ID, with very little latency and a
minimum impact on the phone’s battery, since the preci-
sion of GPS was not required.

Once a LocationProvider has been obtained, the applica-
tion can get information about the real-time location of the
device through the following code:
Location location;

location = lp.getLocation(20); //Request a new location object with a timeout of 20 seconds
The Location object holds important information
about the current location, including an encapsulated
QualifiedCoordinates class that contains information
about the estimated latitude, longitude, altitude of
the current position as well as estimated horizontal
and vertical accuracies associated with the calculated
position. This accuracy information is important, since
no positioning technology can give results with 100%
accuracy. Therefore, the estimated horizontal and ver-
tical accuracy uncertainty values provide a means to
estimate how far the calculated position is (in meters)
from device’s true geographic location. Other impor-
tant information available through the Location object
include:
public class LocListener implements LocationListener {

. . .
public void locationUpdated(LocationProvider provider, Location location) {

// This code will be triggered with updated location data at the defined interval

}
. . .
}

� the timestamp when the location was calculated,
� the current speed and course of the device,
� whether or not the position data is valid (i.e. whether or

not a latitude and longitude could be determined),
� the location method that was used to calculate the
position.

The location method is defined by several different con-
stants including MTE_SATELLITE (i.e. GPS),
MTE_TIMEDIFFERENCE (i.e. cellular-signal based
positioning), and MTE_CELLID (i.e. Cell ID) that repre-
sent particular positioning technologies. Also specified is
whether the technology was assisted or unassisted (i.e.
MTA constants), and whether the technology is network
or terminal (i.e. device)-based (i.e. MTY constants). Using
all of this location information, an application can
evaluate its current state and decide if action needs to be
taken.
3.2. LocationListener

The getLocation() function works well for applications
that require location information once, such as software
that geo-tags an image or text message. However, many
location-aware applications require a constant knowledge
of their current location to trigger certain actions. For
these types of applications, JSR179 defines a LocationLis-
tener that allows an application to be updated at a defined
interval with new location data. The LocationListener is a
Java interface and therefore must be implemented by a
class that defines several methods, including the most
important method which receives the updated location
information from the device:
The LocationListener is then set through the following
lines of code:

LocListener locListener = new LocListener();

int interval = 4;// Interval between location updates is 4 s

int timeout = 2;// Timeout after location request is 2 s

int maxAge = 2;// Maximum age allowed for a duplicate location value to be returned is 2 s
lp.setLocationListener(locListener, interval, timeout, maxAge);

S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103 1095
As a result of these instructions, every 4 s the loca-

tionUpdated() method of LocListener will be fired by
the J2ME platform, which will pass in both the Loca-

tionProvider that calculated the new location as well as
the new Location which was calculated. Every time that
the LocationListener fires, the application can take
action using that new Location information, such as
sending the new location data to a server to create a
real-time tracking application. The LocationListener

provides a very simple mechanism for the 3rd party
developer to monitor device location and therefore
removes the need to implement complex threads and
timers.
public class ProxListener implements ProximityListener{

. . .
public void proximityEvent(Coordinates coordinates, Locatio

// This code will be triggered when proximity to given coordi

}
. . .
}

Fig. 1. J2ME A
3.3. ProximityListener

Another common feature of LBS applications is to trigger
an event when the device nears a particular location. JSR179
provides a ProximityListener, also defined via an interface,
which allows the application to register a specific set of Coor-
dinates (i.e. latitude and longitude) as well as a proximity
radius via the LocationProvider class. When it is determined
that the device has entered the area defined by the coordi-
nates and radius, the proximityEvent() method of the class
that has implemented ProximityListener is fired by the
J2ME platform. Any code that the application developer
has inserted into this method will be called upon this event:
n location){

nates is detected

rchitecture.

1096 S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103
3.4. Landmark and LandmarkStore

JSR179 also contains an on-device database known as
the LandmarkStore, which is a persistent record of Land-

marks. Landmarks are defined by a latitude and longitude
along with other human-readable properties such as name,
address information, and description. The LandmarkStore

provides basic functionality of storing and retrieving Land-

marks, as well as creating categories to which Landmarks

can be assigned.

4. JSR293-Location API v2.0

While JSR179 is a significant contribution to J2ME as a
standardized API to access device location, it does have
several limitations. First, the use of JSR179 in real-world
scenarios has exposed areas in the API where improve-
ments are needed. Since location-aware applications oper-
ate in dynamic environments and with various
positioning technologies, it is very difficult to replicate all
potential scenarios and use cases on emulators. Secondly,
JSR179 was designed as a compact API for early J2ME
mobile phones that were severely resource-constrained.
With the advancement of mobile phone technology, there
are new and more advanced use cases such as real-time
navigation, geo-coding, map user interfaces, and the
exchange of landmark information between devices. In
JSR179, developers would have to code all of these ele-
ments from scratch. A new API should provide these ele-
ments as building blocks to software developers so they
can spend more time developing innovative applications
and less time constructing the basic pieces of location-
aware software. Both of these issues are beyond the scope
of JSR179, and therefore a new JSR is required. Nokia
proposed ‘‘JSR293: Location API 2.0” [19] in early 2006
to address the needs of advanced location-aware applica-
tions. An expert group including Nokia, Motorola,
Sprint-Nextel, the University of South Florida, GPS hard-
ware manufacturer SiRF, Samsung, Cingular, Sun Micro-
systems, Inc., Sony Ericsson, European wireless carriers
Orange and Telecom Italia, and China Mobile Communi-
cations Co. Ltd. has been deliberating on this standard,
with JSR293 currently in the public review stage. JSR293
is significantly more complex than JSR179 and a thorough
discussion is beyond the scope of this article. Therefore, the
following sections focus on two major areas: critical
improvements of elements from JSR179 Location API
v1.0 and significant new features in JSR293 Location
API v2.0.

4.1. Improvement of features from v1.0

One of the challenges encountered when improving
existing features of JSR179 through JSR293 is that
JSR293 must be fully backwards-compatible with
JSR179. In other words, an application developed to run
on a handset with JSR179 must exhibit identical behavior
when running on a handset with JSR293. JSR179 is well-
designed in general, so this issue arises only in a few cases,
primarily the concept of Criteria in LocationProvider

selection, the functionality of the ProximityListener, and
the abilities of the LandmarkStore. Solutions implemented
in these areas were carefully designed to allow backwards
compatibility with legacy JSR179 applications while
providing much needed improvements for future
applications.
4.1.1. Criteria and LocationProvider

Criteria were used in JSR179 to hide the complexity of
different location technologies from the 3rd party software
developer and to prevent an application from binding its
functionality to a specific technology. Ideally, developers
do not have to know anything about the underlying posi-
tioning technologies and simply specify the needs of their
application through the Criteria object to the LocationPro-

vider, which then returns the ‘‘best” technology for this cir-
cumstance. However, the ambiguity of this design leaves an
opening for vastly different behaviors on different JSR179
devices. For example, if conflicting values are set in the
Criteria object such as a PREFERRED_POWER_
CONSUMPTION = LOW and HORIZONTAL_ACCU-

RACY = 5 meters, the LocationProvider of one implemen-
tation may choose A-GPS (thereby giving preference to the
desired accuracy) while another implementation of JSR179
may choose Cell-ID (thereby giving preference to power
consumption). This varying behavior forces the application
developer to construct software that handles a variety of
cases on different JSR179 devices based on the technology
type returned by that platform. Given the sheer number of
permutations of criterion settings compounded by new per-
mutations for different platforms and the increasing num-
ber of available positioning technologies on mobile
phones, this issue defeats the cross-platform concept of
J2ME as well as the desired simplicity of hiding implemen-
tation details from the developer.

Two solutions to this problem have been constructed in
JSR293. First, the Criteria object now supports setting a
priority from 1 to N for each criterion, with the lowest
numbered criterion (1) having the highest priority. This
reduces ambiguity by allowing the application developer
to clearly communicate to the device what criterion is the
most important for his or her application. Secondly, a
new method of retrieving a LocationProvider is supported
via a new getInstance() function that does not rely on Cri-

teria. Instead, an array of prioritized location method con-
stants, or technology types defined in the Location object,
can be input to the API to specify the desired fallback order
of positioning technologies to be used by the LocationPro-

vider. For example, a tracking application may wish to use
GPS, and if GPS is not available use cell signal-based posi-
tioning, and if cell signal-based positioning is not available
use Cell ID:

int[] preferredLocationMethods = new int[3];

preferredLocationMethods[0] = MTE_SATELLITE;//First preference of positioning technology

preferredLocationMethods[1] = MTE_TIMEDIFFERENCE;//Second preference of positioning technology

preferredLocationMethods[2] = MTE_CELLID;//Third preference of positioning technology

LocationProvider lp = LocationProvider.getInstance(preferredLocationMethods, parameters); //Get the LocationProvider

for given preferred location technologies

S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103 1097
This method will be a welcome addition for developers
who understand the pros and cons of different positioning
technologies so they can clearly communicate their applica-
tion needs to the device while still maintaining platform
independence through the use of MTE, MTA, and MTY

constants already defined in JSR179. By allowing
applications to explicitly request a certain type of position-
ing technology, application developers can easily create
their own optimized application-specific positioning
request sequences by simply requesting a new LocationPro-

vider during application execution. For example, if an
application knows that the device is likely to be indoors
where GPS will fail at certain times of the day, it can
directly request a network-based cell signal trilateration
calculation instead of requesting a GPS fix and waiting
for it to failover to a different type of positioning technol-
ogy. While this was technically possible in JSR179, it
involved keeping track of complex proprietary Criteria

mappings to technology types. Allowing smart applica-
tion-level switching of positioning technologies, both net-
work and terminal-based, will likely be important for
future mobile devices that will have an increased number
of different wireless capabilities, including cellular, Wi-Fi,
Bluetooth, ZigBee, and Ultra-Wideband, as well as various
positioning options available within a single wireless tech-
nology. The LocationProvider is able to hide network com-
munication used to implement assisted, network-based, or
hybrid positioning technologies from the application and
allow the developer to concentrate on simply requesting
the right technology at the right time. In a related improve-
ment to LocationProviders, a new location method technol-
ogy constant MTE_INERTIALNAVIGATION is defined
in JSR293 to support positioning via ‘‘dead-reckoning”

when the primary positioning technology (e.g. GPS) is
not available. This feature will allow mobile devices with
embedded accelerometers or other technology to provide
estimated positioning updates to the application in harsh
wireless environments (e.g. indoors or underground) where
the primary positioning technology has lost the ability to
provide accurate location data.

This new method of requesting LocationProviders in
JSR293 also allows the input of a ‘‘parameters” string as a
secondary argument that can define values necessary for a
specific platform to function, such as a location server IP
address and port number (‘‘SERVER_IP = XXX.XXX.
X.XX; SERVER_PORT = Y”) for network-assisted or net-
work-based positioning methods. JSR179 does not support
any parameter strings and therefore this functionality had
to be accomplished through proprietary extensions to
JSR179. The parameters string also allows devices and plat-
forms to create settings and fallback patterns optimized for
specific types of applications on their platform. For example,
a tracking application could simply specify ‘‘APPLICA-
TION_TYPE = TRACKING” in the parameters string
and the device would return a LocationProvider optimized
for tracking on its platform.

4.1.2. ProximityListener

The JSR179 ProximityListener also needed improve-
ment in several areas. First, when the JSR179 Proximity-

Listener was registered for a particular circular area
defined by a point and a radius, the application had to wait
until the implementation fired the proximityEvent()

method before taking action. There was no method to set
or discover the periodic refresh rate used to check the
real-time position against the registered position or any
other kind of communication from the implementation if
the proximity was not detected. Therefore, if the method
did not fire when expected while testing on a real device,
debugging the application was extremely difficult. Causes
for failure could vary from a momentarily dropped GPS
signal, to a temporary loss in GPS accuracy, to a low
refresh rate that could not capture the device’s entrance
into the circular area prior to its exit. Secondly, the Prox-

imityListener lacked the ability to detect an exit from a par-
ticular area, as it only allows detection of an entrance into
the area. Lastly, the only geographic shape supported by
the ProximityListener was a circle, represented by a point
and a radius. There are many use cases where the detection
of a long rectangle area or an irregular polygon defined by
multiple points is desired.

Proximity detection has been greatly enhanced in
JSR293. For example, an interval and timeout value
can be defined by the application when the Proximity-

EnterAndExitListener, which has replaced the JSR179
ProximityListener, is registered. At this interval, a new
locationUpdated() method is called so that the applica-
tion can tell how frequently the device is checking prox-
imity to the registered location. Information about the
positioning technology being used by the implementation

1098 S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103
for proximity detection is also provided so application
developers can better troubleshoot detection failures.
Additionally, detection of departure from a specific area
is now supported through the ProximityEnterAndExitLis-

tener. Finally, JSR293 allows the registration of different
types of geographic areas, including CircularGeograph-
icAreas, RectangleGeographicAreas, and PolygonGeo-

graphicAreas for all JSR293 features that handle
geographic areas, including the ProximityEnterAndExit-

Listener. For example, any polygon that is represented
in a server-side GIS database can now be directly trans-
ferred to a mobile phone, constructed into a PolygonGe-

ographicArea, and registered with the ProximityEnter

AndExitListener. This feature alone is a huge leap ahead
for precise LBS using areas that could not be easily rep-
resented with a center point and radius.
4.1.3. Landmark and LandmarkStore

The Landmark and LandmarkStore also received an
overhaul in JSR293 to lend better support for future
LBS applications. The Landmark now features new fields
such as author, identifier, and timestamp and the Land-
markStore has methods to search the store based on
these properties. Wildcard searches are also allowed. This
expanded search ability should make it much easier for
applications to synchronize on-device landmarks with a
database server and keep track of record updates. Addi-
tionally, the Landmark now has a geographic area in
addition to a simple latitude and longitude to better dif-
ferentiate the coverage of landmarks, such as the concept
of the ‘‘University of South Florida” as a landmark ver-
sus ‘‘Bus Stop 27”. An ‘‘ExtraInfo” field has also been
added as a dedicated field for the storage of applica-
tion-specific data related to landmarks, which can be
used for landmark properties that do not directly map
to existing JSR293 Landmark fields. Generic global land-
mark categories are now defined and localized for a bet-
ter end user experience and consistency among LBS
applications. To better support a large on-device data-
base that may be accessed by multiple J2ME applications
simultaneously, JSR293 also adds a LandmarkStoreLis-

tener that can inform the application when the contents
of the LandmarkStore are modified by another thread
or application. In an effort to improve the privacy and
security of location-aware applications, LandmarkStores
can now be declared as ‘‘private.” Private Landmark-
Stores are only accessible by the application that created
the LandmarkStore, in contrast to JSR179 Landmark-

Stores which were always shared among all J2ME appli-
cations on the device. Private LandmarkStores will allow
secure LBS applications to easily store sensitive location-
related data (e.g. user-generated locations, business cus-
tomer locations, etc.) on the device without worry that
the information could be easily accessed by other appli-
cations. Public LandmarkStores are still allowed and
encouraged in JSR293 for publically available landmark
datasets that can be shared among applications, such
as a points-of-interest database.

4.2. Features new to v2.0

JSR293 also includes many completely new features that
will significantly accelerate LBS software development for
handsets as well as improve interoperability between
mobile devices and server-side systems. These features pro-
vide basic location-aware services to 3rd party J2ME appli-
cations that developers would otherwise have to manually
code, thus drastically shortening the development time for
advanced location-aware applications. The following fea-
tures are presented in the context of a ‘‘Tourist Guide”
mobile application designed to download tourist attrac-
tions for a city, show these landmarks to the user on a
map, and then guide the user on a tour of the city using
real-time navigation.

4.2.1. Landmark exchange formats

An important new feature in the area of interoperabil-
ity is ‘‘Landmark Exchange Formats,” implemented in
an ExchangeFormatFactory. In JSR179,Landmarks

existed primarily inside a single device and were created
and accessed by the same single application. This created
a ‘‘walled garden” of landmarks that could not easily be
shared among other mobile phones or desktop applica-
tions, or downloaded from websites. In JSR293, the
ExchangeFormatFactory can support multiple exchange
formats that promote interaction between mobile phones
and with desktop or server applications. This ability sig-
nificantly increases the usefulness of LBS applications
that handle landmarks, allowing users to share favorite
places via email or text-message and allowing applica-
tions to share landmarks via communication on specific
ports. Additionally, this method allows exchanges with
non-Java devices as well and promotes general interoper-
ability between location-aware systems. Two exchange
formats are included in the JSR293 specification as
examples of different formats that serve various applica-
tion needs: vCard (a light-weight format derived from
the popular vCard standard) and LMX (an XML-based
format). These formats will likely be implemented by
most device manufacturers and will be available for 3rd
party developers to utilize on most JSR293-compliant
devices. Other formats, such as KML or GML, may also
be included by device manufactures. Additionally, the
inclusion of an ExchangeFormatHandler interface allows
3rd party developers to create their own formats in addi-
tion to the formats that device manufacturers decide to
implement. These capabilities make landmark exchanges
virtually limitless in scope and interoperability. The fol-
lowing example from the ‘‘Tourist Guide” application
shows the simplicity of downloading popular tourist
attractions (i.e. landmarks formatted in the vCard for-
mat) from a website and importing them into a
LandmarkStore:

// Get format handler for vCard format

ExchangeFormatHandler handler = ExchangeFormatFactory.getExchangeFormatHandler(‘‘text/x- vcard”);

// Get reference to landmarkstore used to store landmark data for this application

LandmarkStore store = LandmarkStore.getInstance

(‘‘MyFavoriteLandmarks”);

// Open stream connection to website to download landmarks

StreamConnection conn = (StreamConnection) Connector.open(‘‘http://www.tampabaytourism.com/tourist_
attractions.vcf”);
InputStream is = conn.openInputStream();

// Import landmarks into a specific category in the landmark store

handler.importLandmarks(is, store, ‘‘Tampa Tourist Attractions”, true);

S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103 1099
4.2.2. Geocoding

In JSR293, three categories of services are derived from
new ServiceProvider and ServiceListener superinterfaces:
Geocoding, Maps, and Navigation. The use of interfaces
allows device manufacturers and software developers the
opportunity to explore many different types of ServicePro-

viders in addition to the main three groups listed above,
and therefore adds significant expansion opportunities to
JSR293.

Geocoding, or the translation of address information
into latitude and longitude, as well as reverse geocoding,
or the translation of latitude and longitude information
into an address, are both supported through a Geocod-

ingServiceProvider. This feature is very important for
interactions with the user, since positioning technologies
provide coordinate information (i.e. ‘‘Latitude =
28.058425, Longitude = �82.416170”) which is not mean-
ingful to the end user, and users provide location infor-
mation in the form of an address (i.e. ‘‘4202 E. Fowler
Ave. Tampa, FL 33620”) which is not useful to software
and positioning technologies. Geocoding and reverse geo-
coding bridge the gap between the end user and the posi-
tioning technology and enable fluid user interaction with
applications, as well as enable the other types of services
// Get list of landmarks from store

Enumeration enum = store.getLandmarks(‘‘Tampa Tourist A
// Create an array of landmarks to pass into map method

Landmark[] landmarks = new Landmark[10];

while (enum.hasMoreElements()) {

landmarks[i] = (Landmark)enum.nextElement();

i++;}

// Find map service providers

ProviderCapabilities[] providers = ProviderManager.findServ

// Connect to MapServiceProvider

MapServiceProvider mapProvider = (MapServiceProvider)P

getName(), ProviderManager.MAP, null);

// Request MapServiceProvider to display landmarks on the m
mapProvider.displayMap(null, landmarks, null, null,

MapServiceProvider.MAP_TYPE_REGULAR, 0, false, fals
by supplying location information to software in a usable
format. In the ‘‘Tourist Guide” example, the user could
type in an address of a tourist attraction recommended
by a friend and the application could use the Geocoding-

ServiceProvider to generate a latitude and longitude for
that address. This data could then be used to created a
new Landmark that would then be added to the Land-

markStore of existing ‘‘Tampa Tourist Attractions.”

4.2.3. Map user interfaces

Another important feature of many location-aware appli-
cations is the ability to display location information in the
form of a map. JSR293 features a MapServiceProvider that
will allow 3rd party software developers to rapidly build
solutions that include rendering map information, including
landmarks and routes, to the mobile phone screen. This abil-
ity will have various levels of control. So, if the application
simply wants to show something on a map to the user, a sin-
gle function call will hand over control to the MapService-

Provider, which will then show the map to the user in its
default format. In the following example, the ‘‘Tourist
Guide” application shows the user all ‘‘Tampa Tourist
Attractions” that were imported into the LandmarkStore,
including the attraction recommended by a friend:
ttractions”, null);

iceProviders(ProviderManager.MAP, null);

roviderManager. connectToServiceProvider(providers[0].

ap

e, this);

http://jcp.org/en/jsr/detail?id=293
http://jcp.org/en/jsr/detail?id=293

1100 S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103
If the application wants more control over what is ren-
dered to the screen, there is also an option to retrieve a
BaseMap from the MapServiceProvider and then render
this information, along with various MapOverlays, to a
graphics object defined by the application. Through the
manipulation of MapOverlays the application could add
or remove certain related features on a map, such as show-
ing only restaurant or museum attractions to the user. A
MapServiceListener is also defined to allow applications
to react to changes on a map such as the user selecting cer-
tain landmarks or features. Users will also be able to select
different map views such as regular, satellite, and hybrid
that are commonly found on desktop map interfaces. Hav-
ing a standardized map view will provide a consistent feel
to JSR293-compliant applications and will encourage
map providers to create new and advanced features that
build on the basics outlined in JSR293. This feature vastly
simplifies the work of the 3rd party software developer as a
map can be rendered in just a few lines of code.

4.2.4. Navigation

Navigation is perhaps one of the most significant new
additions to JSR293. The ability to easily add real-time
guidance and directions to any mobile applications will
push the LBS industry forward and spur new types of
location-aware applications. The NavigationServiceProvid-

er supports two primary modes of operation in JSR293. If
applications simply want to use a turn-key navigation
solution, it can make a simple call and allow the service
provider to take control of the user interface as well as
application flow to navigate to a particular location.
// Get list of landmarks from store

Enumeration enum = store.getLandmarks(‘‘Tampa Tourist A
// Create an array of coordinates to pass to NavigationServic

Coordinates[] coords = new Coordinates[10];

Landmark lm;

while (enum.hasMoreElements()) {

lm = (Landmark)enum.nextElement();

coords[i] = lm.getQualifiedCoordinates();

i++;}

// Find navigation service providers

ProviderCapabilities[] providers = ProviderManager.findSer

// Connect to NavigationServiceProvider

NavigationServiceProvider navProvider = (NavigationService
viders[0].getName(), ProviderManager.NAVIGATION, nul

// Set Navigation Service Preferences

NavigationServicePreferences prefs = new NavigationService

prefs.setRouteType(ROUTE_SCENIC);//Set preferred type

prefs.setTransportMode(TRANSPORT_CAR);//Set preferre

prefs.setNavigationType(NAVIGATION_TYPE_REAL_TIM

prefs.setInstructionType(INSTRUCTION_VOICE);//Set ins

prefs.setMapShown(true);//Requests that a map is shown to
prefs.setLocationShown(true);//Requests that the user’s real-
For applications that want to handle the navigation logic
and take more control over the navigation process, the
NavigationServiceProvider can act as a route planner that
returns a new Route object that contains all the informa-
tion an application needs to navigate. Both methods allow
the use of NavigationServicePreferences, which can specify
anything from a mode of transportation preference
(including walking and public transit), a desire to obtain
the route with the least traffic, certain geographic areas
to avoid, or voice or text directions. The Route object,
which consists of RouteSegments, allows more queries so
that an application can determine whether it is suitable
for its use, including whether costs such as toll roads
are involved, total travel time, and total distance. If the
application chooses to control the actual navigation pro-
cess, the RouteSegments contain the instructions as well
as the locations where the instructions should be given.
These features allows the 3rd party application developer
to focus on creating a better navigation application, or
integrating navigation into software in new ways, instead
of worrying about the logistics of planning a route and
getting the geographic data to the cell phone. The Route
object can also be created by the 3rd party application,
which allows 3rd party developers to combine Routes
with the landmark exchange format to allow the exchange
of favorite hiking trails, bike paths, bus routes, or scenic
tours. In the following example, the ‘‘Tourist Guide”

application uses the ‘‘Tampa Tourist Attraction” land-
marks to generate a NavigationServiceProvider that will
take the user on a guided tour of all the landmarks using
real-time turn-by-turn directions.
ttractions”, null);
eProvider as waypoints

viceProviders(ProviderManager. NAVIGATION, null);

Provider)ProviderManager. connectToServiceProvider(pro-
l);

Preferences();

of route as the one that is the most scenic

d transportation mode as car

E); //Directions to destination will be given in real-time

tructions to be given to the user via voice announcements

the user while traveling
time location is shown on the map while traveling

navProvider.setServicePreferences(prefs);//Set preferences in NavigationServiceProvider

// Create new object that ‘‘listens” for updates from the NavigationServiceProvider

NavListener listener = new NavListener()

// Request NavigationServiceProvider to navigate through these waypoints – Nav. Provider will take over screen here

navProvider.navigate(coords, listener);

S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103 1101
Another class NavListener must be defined by the appli-
cation that implements the NavigationServiceListener inter-
face. The NavigationServiceProvider will call methods in
the NavigationServiceListener, and thereby trigger actions
in the application, when certain events occur. These events
include encountering a waypoint or reaching a final desti-
nation. Below is a simplified version of a NavListener class:
public class NavListener implements NavigationServiceListener{

. . .
public void waypointReached(Coordinates coordinates){

// This code will be triggered when the waypoint defined by these Coordinates is reached

}
public void destinationReached(){

// This code will be triggered when the final destination is reached

// Control of screen would be handed back to application after this method exits

}
. . .
}

In the above scenario the user would be shown a naviga-
tion-mode screen on their mobile phone with a map show-
ing the user’s current location as well as the tourist
attractions, referred to as waypoints. The JSR293 platform
would then deliver audible instructions (e.g. ‘‘Turn right in
150 feet”) to the user to guide them through to waypoints.
Each time the user reached a waypoint, the JSR293 plat-
form would call the NavListener.waypointReached()
method and pass in the coordinates of the detected way-
point. The application could then compare this location
against the list of tourist attractions to determine which
attraction the user was near, and perform an action such
as showing a picture of the attraction or announcing its
name. Navigation would continue until the last attraction
was reached, at which would the NavListener.destination-
Reached() method would be called by the JSR293 plat-
form. The ‘‘Tourist Guide” application could then take
action to wrap up the tour experience.

For applications that wish to take more control over the
actual navigation process, below is the code that will request
Route information from the NavigationServiceProvider:

Route route = navProvider.getRoute(coords);

Once the application has the Route, it can access the
RouteSegments that compose the Route and deliver noti-
fications to the user according to the supplied informa-
tion. 3rd party applications can then utilize route
information and integrate it into the application in many
different ways.

As mentioned earlier, the MapServiceProvider and Nav-

igationServiceProvider, along with all other objects in
JSR293, allow the use of more complex geographic objects
beyond simple circles, including RectangleGeographicAreas

(i.e. rectangles) and PolygonGeographicAreas (i.e. irregu-
larly-shaped polygons). These geographic objects can be
used for many advanced features in JSR293, including
requesting an area to be displayed on a map or defining
geographic areas to be avoided when requesting a Route

from a NavigationServiceProvider. Since few geographic
features in the real-world can be accurately represented
using only circles, this seemingly simple characteristic in
JSR293 should make the API more adaptable to real-world
problems.

5. Implications for stakeholders

JSR293 has many implications for various stakeholders,
including device manufacturers, wireless carriers, geo-
graphic data providers, and the 3rd party application
developers.

Device manufacturers are primarily responsible for
implementing the hardware and software capabilities of
the handsets, as well as coordinating with wireless carriers
when assisted and network-based positioning technologies
are supported. JSR293 will create some work for device
manufacturers that are responsible for implementing
JSR293 on the device, since the implementation of new
capabilities exposed in v2.0 are not trivial. JSR293 should
provide enough guidance to device manufacturers to
ensure consistency between different JSR293 platforms,
while still allowing platforms to implement various features
that improve performance or add value on their particular

1102 S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103
platform. Since the basic ServiceProvider and ServiceLis-

tener are defined as interfaces in JSR293, there is a poten-
tial for device manufacturers and/or wireless carriers to
create new location-aware services based on these objects.
Even though these services would be proprietary extensions
to JSR293 (i.e. not available on all JSR293 implementa-
tions), there may be some providers that would take the ini-
tiative to create and promote their own types of services for
their specific platforms as a competitive advantage. Since
the basic Java ServiceProvider interface already exist in
JSR293, this would allow a common base with other
JSR293 service providers and familiarity to JSR293 pro-
grammers, thus promoting rapid adoption of extensions
to JSR293.

Coordination with geographic data providers must also
take place in order to make certain JSR293 services (e.g.
GeocodingServiceProvider, MapServiceProvider, and Navi-

gationServiceProvider) available to the developer. Geo-
graphic services are of little value without up-to-date
geographic information defining road networks and
points-of-interest, so GIS databases must be maintained
and provisioned for access from mobile devices through
JSR293 service providers.

Third party application developers are responsible for
creating unique applications that will make efficient use
of device resources, the cellular network, and geographic
services exposed in JSR293 in order to create advanced
location-aware applications that will generate revenue for
all parties involved, either directly or indirectly through
increased use of the mobile device and cellular network.
JSR293 should facilitate the integration of data from multi-
ple sources in order to add value to applications. For exam-
ple, an application could download a list of landmarks that
represent real-time areas of dense traffic and feed these
areas into a NavigationServiceProvider as places the appli-
cation would like to avoid when generating a route. Multi-
ple sources of information and services allow programmers
to create ‘‘mash-ups” for location-aware applications that
combine data from providers operated by multiple organi-
zations. Each of these providers may have a cost, or they
may be free. JSR293 allows a mechanism for the 3rd party
application developer to query service providers and deter-
mine the impact a provider might have on the end user (i.e.
will it generate network traffic billable to the user, is there
fee for the service, etc.).

The availability of different types of JSR293 Service-
Provider objects directly accessible to application devel-
opers on specific J2ME implementations will likely be
decided by device manufacturers and wireless carriers
in coordination with commercial partners. It is hoped
that all parties involved in realizing JSR293 will support
an open system that will also allow 3rd party software
developers to create ‘‘middleware” ServiceProviders that
could be registered and accessed through mobile applica-
tions utilizing JSR293. An open environment would
likely allow free versions of a provider with only basic
functionality as well as a more advanced provider with
advanced services at a subscription or per-use fee,
thereby stimulating competition and ensuring that costly
service providers add an appropriate value for the end-
user of the application. Closed systems accessible only
to commercial partners may stifle innovation and slow
down the adoption of such services.

It is also hoped that device manufacturers and wireless
carriers will provide an open-access model that would
allow any properly registered 3rd party application devel-
oper to create and test applications that utilize JSR293
on real mobile phones. Development of location-aware
applications using emulators is limiting at best, since appli-
cation performance and behavior can only be properly
evaluated using the actual hardware device. Such open
access would fuel the rapid development of many different
types of location-aware mobile applications, thus accelerat-
ing the adoption of such software by mobile phone users.
Google’s Android platform is based on these open-access
concepts, and it is hoped that parties involved in the imple-
mentation and distribution of JSR293 devices follow suit.

6. Conclusions

‘‘JSR293: Location API 2.0” is a new standard for loca-
tion-aware J2ME mobile phones that improves v1.0 fea-
tures (‘‘JSR179: Location API”) and adds many new
advanced location-aware capabilities. At a basic level,
JSR293 allows Java applications running on board a
mobile device to access real-time location information from
a positioning technology such as A-GPS. JSR293 also pro-
motes the rapid development of advanced location-aware
applications by exposing powerful functionality to 3rd
party software developers. These capabilities include shar-
ing information about favorite locations or routes through
new Landmark Exchange Formats, viewing the location of
nearby friends using on-screen maps in a new MapService-

Provider, and providing users with customized navigation
services through a new NavigationServiceProvider. To sup-
port these services a newGeocodingServiceProvider for geo-
coding and reverse geocoding is supported, as well as
support for advanced geographic areas such as rectangles
and polygons in addition to simple circles. While mobile
phones are the primary target of JSR293, any mobile
device that implements J2ME’s Connected Limited Device
Configuration (CLDC) 1.1 or Connected Device Configu-
ration (CDC) can utilize this API. This covers a large range
of mobile devices, including Personal Digital Assistants
(PDAs), sensors in wireless sensor networks, and embed-
ded systems in vehicles.

JSR293 is currently in the public review stage with the
final release expected Q2 2008. While the core functionality
of this API is expected to remain the same, there is still a
possibility for changes in details until the final release date.
As a result, it should be noted that this article is illustrative
in purpose, and JSR293 is subject to change. To view the
specification as it currently exists, or to submit comments
to be considered by the expert group, please visit the JCP

S.J. Barbeau et al. / Computer Communications 31 (2008) 1091–1103 1103
webpage for ‘‘JSR293: Location API 2.0” at http://jcp.org/
en/jsr/detail?id=293. Comments and suggestions are
strongly encouraged, as the API can be strengthened by
input from anyone working in the area of location-aware
information systems.

The next generation of mobile applications will likely all
be ‘‘location-aware” in some manner to protect mobile
device users from information overload. Mobile applica-
tion developers are beginning to understand that location
in itself is not a killer application, but a killer attribute.
Location, when used appropriately, can be a significant
indicator as to what information is currently relevant to
the user. As a result, complex LBS systems and applica-
tions are beginning to emerge that provide traditional ser-
vices such as multimedia messaging with the added
attribute of location. JSR293 will help push this trend for-
ward and allow mobile application developers to quickly
and easily integrate advanced location-aware features into
future applications. The end products will be location-
aware applications that deliver information to you based
on who you are, what you want, when you want it and,
finally and perhaps most importantly for mobile applica-
tions, where you are.

References

[1] K. Ridley, Global Mobile Phone Use To Hit Record 3.25 Billion,
Reuters, June 27, 2007. � Reuters 2007. Available online at http://
www.reuters.com/article/email/idUSL2712199720070627.

[2] ABI Research, GPS-enabled Location-Based Services (LBS) Sub-
scribers Will Total 315 Million in Five Years, New York, September
27, 2006. � 2007 ABI Research. http://www.abiresearch.com/
abiprdisplay.jsp?pressid=731.

[3] ABI Research, Personal Locator Services to Reach More than 20
Million North American Consumers by 2011, New York, November
28th, 2006. � 2007 ABI Research. http://www.abiresearch.com/
abiprdisplay.jsp?pressid=766.
[4] Sun Microsystems, Inc., The Java ME Platform – the Most
Ubiquitous Application Platform for Mobile Devices, http://java.-
sun.com/javame/, � 1994-2007 Sun Microsystems, Inc.

[5] Sun Microsystems, Inc., Java Technology: The Power of the Java
Brand, http://java.com/brand. � 2007 Sun Microsystems, Inc.

[6] Open Geospatial Consortium, Inc., OpenGIS� Specifications (Stan-
dards), http://www.opengeospatial.org/standards. � 1994-2007 Open
GeoSpatial Consortium, Inc.

[7] Open Geospatial Consortium, Inc., Geography Markup Language,
http://www.opengeospatial.org/standards/gml. � 1994-2007 Open
GeoSpatial Consortium, Inc.

[8] Open Geospatial Consortium, Inc., Location Service (OpenLS): Core
Services, http://www.opengeospatial.org/standards/olscore � 1994-
2007 Open GeoSpatial Consortium, Inc.

[9] European Telecommunications Standards Institute, http://www.et-
si.org/. � ETSI 2004.

[10] Open Mobile Alliance (OMA) Location Working Group, TS 101 –
Mobile Location Protocol Specification – Version 3.0.0, http://
www.openmobilealliance.org/tech/affiliates/lif/lifindex.html � 2007
Open Mobile Alliance Ltd.

[11] The Parlay Group, Parlay/OSA Specifications, http://www.par-
lay.org/en/specifications/. � Parlay 2007.

[12] National Marine Electronics Association, NMEA 0183 Interface
Standard, http://www.nmea.org/pub/0183/ � NMEA 2003.

[13] Sun Microsystems, Inc., Java Specification Request (JSR) 179:
Location API for J2METM, http://jcp.org/en/jsr/detail?id = 179. �
Sun Microsystems, Inc. 2007.

[14] Motorola, iDEN J2METM Developer’s Guide 2005, Version 1.98, �
Motorola, Inc. 2005, pp. 487–498.

[15] Qualcomm, Qualcomm Java Application Extensions, http://
www.cdmatech.com/products/qvm_qjae.jsp. � Qualcomm 2007.

[16] Google, Android – An Open Handset Alliance Project, http://
code.google.com/android/documentation.html. � Google 2007.

[17] Sun Microsystems, Inc., Java Specification Request (JSR) 271:
Mobile Information Device Profile 3, http://jcp.org/en/jsr/detai-
l?id = 271. � Sun Microsystems, Inc. 2007.

[18] Sun Microsystems, Inc., Java Specification Request (JSR) 232:
Mobile Operational Management, http://jcp.org/en/jsr/detai-
l?id = 232. � Sun Microsystems, Inc. 2007.

[19] Sun Microsystems, Inc., Java Specification Request (JSR) 293:
Location API 2.0, http://jcp.org/en/jsr/detail?id = 293. � Sun Micro-
systems, Inc 2007.

http://jcp.org/en/jsr/detail?id=293
http://jcp.org/en/jsr/detail?id=293
http://www.reuters.com/article/email/idUSL2712199720070627
http://www.reuters.com/article/email/idUSL2712199720070627
http://www.abiresearch.com/abiprdisplay.jsp?pressid=731
http://www.abiresearch.com/abiprdisplay.jsp?pressid=731
http://www.abiresearch.com/abiprdisplay.jsp?pressid=766
http://www.abiresearch.com/abiprdisplay.jsp?pressid=766
http://java.sun.com/javame/
http://java.sun.com/javame/
http://java.com/brand
http://www.opengeospatial.org/standards
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/olscore
http://www.etsi.org/
http://www.etsi.org/
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html
http://www.parlay.org/en/specifications/
http://www.parlay.org/en/specifications/
http://www.nmea.org/pub/0183/
http://jcp.org/en/jsr/
http://www.cdmatech.com/products/qvm_qjae.jsp
http://www.cdmatech.com/products/qvm_qjae.jsp
http://code.google.com/android/documentation.html
http://code.google.com/android/documentation.html
http://jcp.org/en/jsr/
http://jcp.org/en/jsr/
http://jcp.org/en/jsr/

	Location API 2.0 for J2ME - A new standard in location for Java-enabled mobile phones
	Introduction
	The J2ME-Location API - How it differs from other " Location’’ !" standards
	JSR179 - Location API v1.0
	Criteria, LocationProvider, and Location
	LocationListener
	ProximityListener
	Landmark and LandmarkStore

	JSR293-Location API v2.0
	Improvement of features from v1.0
	Criteria and LocationProvider
	ProximityListener
	Landmark and LandmarkStore

	Features new to v2.0
	Landmark exchange formats
	Geocoding
	Map user interfaces
	Navigation

	Implications for stakeholders
	Conclusions
	References

