간혹, 다른 교재를 보면,
와 같이 나타나는데 이 둘은 같은 의미를 갖는다.
동일한 공식 설명:
그리고
따라서
따라서
국어와 영어 점수 간의 상관관계 | ||
Korean | English | |
A | 1 | 1 |
B | 4 | 2 |
C | 5 | 4 |
D | 3 | 3 |
E | 7 | 5 |
국어와 영어 점수 간의 상관관계 | |||||
X | Y | ||||
A | 1 | 1 | 1 | 1 | 1 |
B | 4 | 2 | 16 | 4 | 8 |
C | 5 | 4 | 25 | 16 | 20 |
D | 3 | 3 | 9 | 9 | 9 |
E | 7 | 5 | 49 | 25 | 35 |
DATA for regression analysis | ||
bankaccount | income | famnum |
6 | 220 | 5 |
5 | 190 | 6 |
7 | 260 | 3 |
7 | 200 | 4 |
8 | 330 | 2 |
10 | 490 | 4 |
8 | 210 | 3 |
11 | 380 | 2 |
9 | 320 | 1 |
9 | 270 | 3 |
m = 8 | 287 | 3.3 |
account income fammember Min. : 5 Min. :190.0 Min. :1.00 1st Qu.: 7 1st Qu.:212.5 1st Qu.:2.25 Median : 8 Median :265.0 Median :3.00 Mean : 8 Mean :287.0 Mean :3.30 3rd Qu.: 9 3rd Qu.:327.5 3rd Qu.:4.00 Max. :11 Max. :490.0 Max. :6.00아래는 평균값인 8만을 이용해서 Y값을 예측해 본 후에 이 예측값과 측정값 (원래데이터)의 차이를 구한후 (error column) 이를 다시 제곱한 것을 (error2 ) 정리한 표이다. 연구자는 현재 Y에 대한 정보만을 가지고 Y값을 예측하는 상황이다. 따라서, 평균값인 를 사용한 것은 자연스러운 판단이라고 생각된다.
prediction for y values with | ||
bankaccount | error | error^2 |
6 | -2 | 4 |
5 | -3 | 9 |
7 | -1 | 1 |
7 | -1 | 1 |
8 | 0 | 0 |
10 | 2 | 4 |
8 | 0 | 0 |
11 | 3 | 9 |
9 | 1 | 1 |
9 | 1 | 1 |
Residuals: Min 1Q Median 3Q Max -1.5189 -0.8969 -0.1297 1.0058 1.5800 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.617781 1.241518 2.914 0.01947 * income 0.015269 0.004127 3.700 0.00605 ** --- Sig. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.176 on 8 degrees of freedom Multiple R-squared: 0.6311, Adjusted R-squared: 0.585 F-statistic: 13.69 on 1 and 8 DF, p-value: 0.006046위의 계산에서:
prediction for y values with regression | |||
bankaccount | pred1 | error1 | error^2 |
6 | 6.977 | 0.977 | 0.954 |
5 | 6.519 | 1.519 | 2.307 |
7 | 7.588 | 0.588 | 0.345 |
7 | 6.672 | -0.328 | 0.108 |
8 | 8.657 | 0.657 | 0.431 |
10 | 11.100 | 1.100 | 1.209 |
8 | 6.824 | -1.176 | 1.382 |
11 | 9.420 | -1.580 | 2.496 |
9 | 8.504 | -0.496 | 0.246 |
9 | 7.740 | -1.260 | 1.587 |
8 |
ANOVA(b) | ||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | |
1.000 | Regression | 18.934 | 1.000 | 18.934 | 13.687 | 0.006 |
Residual | 11.066 | 8.000 | 1.383 | |||
Total | 30.000 | 9.000 | ||||
a | Predictors: (Constant), bankIncome income | |||||
b | Dependent Variable: bankbook number of bank |
Model Summary | |||||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | |
1.000 | 0.794 | 0.631 | 0.585 | 1.176 | |
a | Predictors: (Constant), bankIncome income |
Coefficients(a) | ||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | ||||
1.000 | (Constant) | 3.618 | 1.242 | 2.914 | 0.019 | |
bankIncome income | 0.015 | 0.004 | 0.794 | 3.700 | 0.006 | |
a | Dependent Variable: bankbook number of bank |
Data Label description | ||
Variable Labels | ||
Variable | Position | Label |
snum | 1 | school number |
dnum | 2 | district number |
api00 | 3 | api 2000 |
api99 | 4 | api 1999 |
growth | 5 | growth 1999 to 2000 |
meals | 6 | pct free meals |
ell | 7 | english language learners |
yr_rnd | 8 | year round school |
mobility | 9 | pct 1st year in school |
acs_k3 | 10 | avg class size k-3 |
acs_46 | 11 | avg class size 4-6 |
not_hsg | 12 | parent not hsg |
hsg | 13 | parent hsg |
some_col | 14 | parent some college |
col_grad | 15 | parent college grad |
grad_sch | 16 | parent grad school |
avg_ed | 17 | avg parent ed |
full | 18 | pct full credential |
emer | 19 | pct emer credential |
enroll | 20 | number of students |
mealcat | 21 | Percentage free meals in 3 categories |
list /variables api00 acs_k3 meals full /cases from 1 to 10.
api00 acs_k3 meals full 693 16 67 76.00 570 15 92 79.00 546 17 97 68.00 571 20 90 87.00 478 18 89 87.00 858 20 . 100.00 918 19 . 100.00 831 20 . 96.00 860 20 . 100.00 737 21 29 96.00 Number of cases read: 10 Number of cases listed: 10
descriptive /var = all .
Descriptive Statistics | |||||
N | Minimum | Maximum | Mean | Std. Deviation | |
school number | 400 | 58 | 6072 | 2866.81 | 1543.811 |
district number | 400 | 41 | 796 | 457.74 | 184.823 |
api 2000 | 400 | 369 | 940 | 647.62 | 142.249 |
api 1999 | 400 | 333 | 917 | 610.21 | 147.136 |
growth 1999 to 2000 | 400 | -69 | 134 | 37.41 | 25.247 |
pct free meals | 315 | 6 | 100 | 71.99 | 24.386 |
english language learners | 400 | 0 | 91 | 31.45 | 24.839 |
year round school | 400 | 0 | 1 | .23 | .421 |
pct 1st year in school | 399 | 2 | 47 | 18.25 | 7.485 |
avg class size k-3 | 398 | -21 | 25 | 18.55 | 5.005 |
avg class size 4-6 | 397 | 20 | 50 | 29.69 | 3.841 |
parent not hsg | 400 | 0 | 100 | 21.25 | 20.676 |
parent hsg | 400 | 0 | 100 | 26.02 | 16.333 |
parent some college | 400 | 0 | 67 | 19.71 | 11.337 |
parent college grad | 400 | 0 | 100 | 19.70 | 16.471 |
parent grad school | 400 | 0 | 67 | 8.64 | 12.131 |
avg parent ed | 381 | 1.00 | 4.62 | 2.6685 | .76379 |
pct full credential | 400 | .42 | 100.00 | 66.0568 | 40.29793 |
pct emer credential | 400 | 0 | 59 | 12.66 | 11.746 |
number of students | 400 | 130 | 1570 | 483.47 | 226.448 |
Percentage free meals in 3 categories | 400 | 1 | 3 | 2.02 | .819 |
examine /variables=acs_k3 /plot histogram stem boxplot .
Descriptives | ||||
Statistic | Std. Error | |||
avg class size k-3 | Mean | 18.55 | .251 | |
95% Confidence Interval for Mean | Lower Bound | 18.05 | ||
Upper Bound | 19.04 | |||
5% Trimmed Mean | 19.13 | |||
Median | 19.00 | |||
Variance | 25.049 | |||
Std. Deviation | 5.005 | |||
Minimum | -21 | |||
Maximum | 25 | |||
Range | 46 | |||
Interquartile Range | 2 | |||
Skewness | -7.106 | .122 | ||
Kurtosis | 53.014 | .244 |
avg class size k-3 Stem-and-Leaf Plot Frequency Stem & Leaf 8.00 Extremes (=<14.0) 1.00 15 . & .00 15 . 14.00 16 . 0000000 .00 16 . 20.00 17 . 0000000000 .00 17 . 64.00 18 . 00000000000000000000000000000000 .00 18 . 143.00 19 . 00000000000000000000000000000000000000000000000000000000000000000000000 .00 19 . 97.00 20 . 000000000000000000000000000000000000000000000000 .00 20 . 40.00 21 . 00000000000000000000 .00 21 . 7.00 22 . 000 .00 22 . 3.00 23 . 0 1.00 Extremes (>=25.0) Stem width: 1 Each leaf: 2 case(s) & denotes fractional leaves.
frequencies /var acs_k3.
avg class size k-3 | |||||
Frequency | Percent | Valid Percent | Cumulative Percent | ||
Valid | -21 | 3 | .8 | .8 | .8 |
-20 | 2 | .5 | .5 | 1.3 | |
-19 | 1 | .3 | .3 | 1.5 | |
14 | 2 | .5 | .5 | 2.0 | |
15 | 1 | .3 | .3 | 2.3 | |
16 | 14 | 3.5 | 3.5 | 5.8 | |
17 | 20 | 5.0 | 5.0 | 10.8 | |
18 | 64 | 16.0 | 16.1 | 26.9 | |
19 | 143 | 35.8 | 35.9 | 62.8 | |
20 | 97 | 24.3 | 24.4 | 87.2 | |
21 | 40 | 10.0 | 10.1 | 97.2 | |
22 | 7 | 1.8 | 1.8 | 99.0 | |
23 | 3 | .8 | .8 | 99.7 | |
25 | 1 | .3 | .3 | 100.0 | |
Total | 398 | 99.5 | 100.0 | ||
Missing | System | 2 | .5 | ||
Total | 400 | 100.0 |
compute filtvar = (acs_k3 < 0). filter by filtvar. list cases /var snum dnum acs_k3.
snum dnum acs_k3 600 140 -20 596 140 -19 611 140 -20 595 140 -21 592 140 -21 602 140 -21 Number of cases read: 6 Number of cases listed: 6
filter off. IF (acs_k3<0) racs_k3=ABS(acs_k3). IF (acs_k3>=0) racs_k3=acs_k3. EXECUTE.
frequencies variables=full /format=notable /histogram .
pct full credential | |||||
Frequency | Percent | Valid Percent | Cumulative Percent | ||
Valid | 0.42 | 1 | .3 | .3 | .3 |
0.45 | 1 | .3 | .3 | .5 | |
0.46 | 1 | .3 | .3 | .8 | |
0.47 | 1 | .3 | .3 | 1.0 | |
0.48 | 1 | .3 | .3 | 1.3 | |
0.5 | 3 | .8 | .8 | 2.0 | |
0.51 | 1 | .3 | .3 | 2.3 | |
0.52 | 1 | .3 | .3 | 2.5 | |
0.53 | 1 | .3 | .3 | 2.8 | |
0.54 | 1 | .3 | .3 | 3.0 | |
0.56 | 2 | .5 | .5 | 3.5 | |
0.57 | 2 | .5 | .5 | 4.0 | |
0.58 | 1 | .3 | .3 | 4.3 | |
0.59 | 3 | .8 | .8 | 5.0 | |
0.6 | 1 | .3 | .3 | 5.3 | |
0.61 | 4 | 1.0 | 1.0 | 6.3 | |
0.62 | 2 | .5 | .5 | 6.8 | |
0.63 | 1 | .3 | .3 | 7.0 | |
0.64 | 3 | .8 | .8 | 7.8 | |
0.65 | 3 | .8 | .8 | 8.5 | |
0.66 | 2 | .5 | .5 | 9.0 | |
0.67 | 6 | 1.5 | 1.5 | 10.5 | |
0.68 | 2 | .5 | .5 | 11.0 | |
0.69 | 3 | .8 | .8 | 11.8 | |
0.7 | 1 | .3 | .3 | 12.0 | |
0.71 | 1 | .3 | .3 | 12.3 | |
0.72 | 2 | .5 | .5 | 12.8 | |
0.73 | 6 | 1.5 | 1.5 | 14.3 | |
0.75 | 4 | 1.0 | 1.0 | 15.3 | |
0.76 | 2 | .5 | .5 | 15.8 | |
0.77 | 2 | .5 | .5 | 16.3 | |
0.79 | 3 | .8 | .8 | 17.0 | |
0.8 | 5 | 1.3 | 1.3 | 18.3 | |
0.81 | 8 | 2.0 | 2.0 | 20.3 | |
0.82 | 2 | .5 | .5 | 20.8 | |
0.83 | 2 | .5 | .5 | 21.3 | |
0.84 | 2 | .5 | .5 | 21.8 | |
0.85 | 3 | .8 | .8 | 22.5 | |
0.86 | 2 | .5 | .5 | 23.0 | |
0.9 | 3 | .8 | .8 | 23.8 | |
0.92 | 1 | .3 | .3 | 24.0 | |
0.93 | 1 | .3 | .3 | 24.3 | |
0.94 | 2 | .5 | .5 | 24.8 | |
0.95 | 2 | .5 | .5 | 25.3 | |
0.96 | 1 | .3 | .3 | 25.5 | |
1 | 2 | .5 | .5 | 26.0 | |
37 | 1 | .3 | .3 | 26.3 | |
41 | 1 | .3 | .3 | 26.5 | |
44 | 2 | .5 | .5 | 27.0 | |
45 | 2 | .5 | .5 | 27.5 | |
46 | 1 | .3 | .3 | 27.8 | |
48 | 1 | .3 | .3 | 28.0 | |
53 | 1 | .3 | .3 | 28.3 | |
57 | 1 | .3 | .3 | 28.5 | |
58 | 3 | .8 | .8 | 29.3 | |
59 | 1 | .3 | .3 | 29.5 | |
61 | 1 | .3 | .3 | 29.8 | |
63 | 2 | .5 | .5 | 30.3 | |
64 | 1 | .3 | .3 | 30.5 | |
65 | 1 | .3 | .3 | 30.8 | |
68 | 2 | .5 | .5 | 31.3 | |
69 | 3 | .8 | .8 | 32.0 | |
70 | 1 | .3 | .3 | 32.3 | |
71 | 3 | .8 | .8 | 33.0 | |
72 | 1 | .3 | .3 | 33.3 | |
73 | 2 | .5 | .5 | 33.8 | |
74 | 1 | .3 | .3 | 34.0 | |
75 | 4 | 1.0 | 1.0 | 35.0 | |
76 | 4 | 1.0 | 1.0 | 36.0 | |
77 | 2 | .5 | .5 | 36.5 | |
78 | 4 | 1.0 | 1.0 | 37.5 | |
79 | 3 | .8 | .8 | 38.3 | |
80 | 10 | 2.5 | 2.5 | 40.8 | |
81 | 4 | 1.0 | 1.0 | 41.8 | |
82 | 3 | .8 | .8 | 42.5 | |
83 | 9 | 2.3 | 2.3 | 44.8 | |
84 | 4 | 1.0 | 1.0 | 45.8 | |
85 | 8 | 2.0 | 2.0 | 47.8 | |
86 | 5 | 1.3 | 1.3 | 49.0 | |
87 | 12 | 3.0 | 3.0 | 52.0 | |
88 | 6 | 1.5 | 1.5 | 53.5 | |
89 | 5 | 1.3 | 1.3 | 54.8 | |
90 | 9 | 2.3 | 2.3 | 57.0 | |
91 | 8 | 2.0 | 2.0 | 59.0 | |
92 | 7 | 1.8 | 1.8 | 60.8 | |
93 | 12 | 3.0 | 3.0 | 63.8 | |
94 | 10 | 2.5 | 2.5 | 66.3 | |
95 | 17 | 4.3 | 4.3 | 70.5 | |
96 | 17 | 4.3 | 4.3 | 74.8 | |
97 | 11 | 2.8 | 2.8 | 77.5 | |
98 | 9 | 2.3 | 2.3 | 79.8 | |
100 | 81 | 20.3 | 20.3 | 100.0 | |
Total | 400 | 100.0 | 100.0 |
frequencies variables=full .
IF (full <= 1) rfull=full * 100. IF (full > 1) rfull=full. EXECUTE.
stream spec83 ph83 Moss 6 6.30 Orcutt 9 6.30 Ellinwood 6 6.30 Jacks 3 6.20 Riceville 5 6.20 Lyons 3 6.10 Osgood 5 5.80 Whetstone 4 5.70 Upper Keyup 1 5.70 West 7 5.70 Boyce 4 5.60 Mormon Hollow 4 5.50 Lawrence 5 5.40 Wilder 0 4.70 Templeton 0 4.50
display labels . output: Variable Labels Variable Position Label stream 1 trubutary of Miller River MA spec83 2 Number of Fish Species ph83 3 Average Summer pH Variables in the working file
list /cases from 1 to 5 . output: stream spec83 ph83 Moss 6 6.30 Orcutt 9 6.30 Ellinwood 6 6.30 Jacks 3 6.20 Riceville 5 6.20 Number of cases read: 5 Number of cases listed: 5
list /variables stream spec83 ph83 . output: stream spec83 ph83 Moss 6 6.30 Orcutt 9 6.30 Ellinwood 6 6.30 Jacks 3 6.20 Riceville 5 6.20 Lyons 3 6.10 Osgood 5 5.80 Whetstone 4 5.70 Upper Keyup 1 5.70 West 7 5.70 Boyce 4 5.60 Mormon Hollow 4 5.50 Lawrence 5 5.40 Wilder 0 4.70 Templeton 0 4.50 Number of cases read: 15 Number of cases listed: 15
descriptive /var = all . output: Warnings No statistics are computed for the following variables because they are strings: trubutary of Miller River MA. Descriptive Statistics N Minimum Maximum Mean Std. Deviation Number of Fish Species 15 0 9 4.13 2.503 Average Summer pH 15 4.50 6.30 5.7333 .55506 Valid N (listwise) 15
examine /variables spec83 /plot histogram STEMLEAF boxplot. output: Case Processing Summary Cases Valid Missing Total N Percent N Percent N Percent Number of Fish Species 15 100.0% 0 .0% 15 100.0% Descriptives Statistic Std. Error Number of Fish Species Mean 4.13 .646 95% Confidence Interval for Mean Lower Bound 2.75 Upper Bound 5.52 5% Trimmed Mean 4.09 Median 4.00 Variance 6.267 Std. Deviation 2.503 Minimum 0 Maximum 9 Range 9 Interquartile Range 3 Skewness -.111 .580 Kurtosis -.025 1.121 Number of Fish Species Stem-and-Leaf Plot Frequency Stem & Leaf 3.00 0 . 001 2.00 0 . 33 6.00 0 . 444555 3.00 0 . 667 1.00 0 . 9 Stem width: * Each leaf: 1 case(s)
FREQUENCIES variables = ph83 /format=NOTABLE /histogram . output: Statistics Average Summer pH N Valid 15 Missing 0 + histogram (omitted)
GRAPH /SCATTERPLOT (matrix) = spec83 ph83. output: omitted.
REGRESSION /dependent=spec83 /method=enter ph83. output: Variables Entered/Removed(b) Model Variables Entered Variables Removed Method 1 Average Summer pHa . Enter a. All requested variables entered. b. Dependent Variable: Number of Fish Species Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .696a .484 .444 1.866 a. Predictors: (Constant), Average Summer pH ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 42.462 1 42.462 12.193 .004a Residual 45.272 13 3.482 Total 87.733 14 a. Predictors: (Constant), Average Summer pH b. Dependent Variable: Number of Fish Species Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) -13.855 5.174 -2.678 .019 Average Summer pH 3.138 .899 .696 3.492 .004 a. Dependent Variable: Number of Fish Species
DATA | |
x | y |
1 | 1 |
2 | 1 |
3 | 2 |
4 | 2 |
5 | 4 |
Model Summary(b) | ||||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | 0.903696114 | 0.816666667 | 0.755555556 | 0.605530071 |
ANOVA | ||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | |
1 | Regression | 4.9 | 1 | 4.9 | 13.36363636 | 0.035352847 |
Residual | 1.1 | 3 | 0.366666667 | |||
Total | 6 | 4 | ||||
a | Predictors: (Constant), x | |||||
b | Dependent Variable: y |
example | ||||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95% Confidence Interval for B | |||
B | Std. Error | Beta | Lower Bound | Upper Bound | ||||
1 | (Constant) | -0.1 | 0.635085296 | -0.157459164 | 0.88488398 | -2.121124854 | 1.921124854 | |
x | 0.7 | 0.191485422 | 0.903696114 | 3.655630775 | 0.035352847 | 0.090607928 | 1.309392072 | |
a | Dependent Variable: y |
display labels .
Data Label description | ||
Variable Labels | ||
Variable | Position | Label |
snum | 1 | school number |
dnum | 2 | district number |
api00 | 3 | api 2000 |
api99 | 4 | api 1999 |
growth | 5 | growth 1999 to 2000 |
meals | 6 | pct free meals |
ell | 7 | english language learners |
yr_rnd | 8 | year round school |
mobility | 9 | pct 1st year in school |
acs_k3 | 10 | avg class size k-3 |
acs_46 | 11 | avg class size 4-6 |
not_hsg | 12 | parent not hsg |
hsg | 13 | parent hsg |
some_col | 14 | parent some college |
col_grad | 15 | parent college grad |
grad_sch | 16 | parent grad school |
avg_ed | 17 | avg parent ed |
full | 18 | pct full credential |
emer | 19 | pct emer credential |
enroll | 20 | number of students |
mealcat | 21 | Percentage free meals in 3 categories |
regression /dependent api00 /method=enter enroll.
Model Summaryb | |||||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | |
1 | .318a | .101 | .099 | 135.026 | |
a. Predictors: (Constant), number of students | |||||
b. Dependent Variable: api 2000 |
ANOVAb | ||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | |
1 | Regression | 817326.293 | 1 | 817326.293 | 44.829 | .000a |
Residual | 7256345.704 | 398 | 18232.024 | |||
Total | 8073671.998 | 399 | ||||
a. Predictors: (Constant), number of students | ||||||
b. Dependent Variable: api 2000 |
Coefficientsa | ||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | ||||
1 | (Constant) | 744.251 | 15.933 | 46.711 | .000 | |
number of students | -.200 | .030 | -.318 | -6.695 | .000 | |
a. Dependent Variable: api 2000 |
Residuals Statisticsa | ||||||
Minimum | Maximum | Mean | Std. Deviation | N | ||
Predicted Value | 430.46 | 718.27 | 647.62 | 45.260 | 400 | |
Std. Predicted Value | -4.798 | 1.561 | .000 | 1.000 | 400 | |
Standard Error of Predicted Value | 6.751 | 33.130 | 8.995 | 3.205 | 400 | |
Adjusted Predicted Value | 419.51 | 718.81 | 647.64 | 45.452 | 400 | |
Residual | -285.500 | 389.148 | .000 | 134.857 | 400 | |
Std. Residual | -2.114 | 2.882 | .000 | .999 | 400 | |
Stud. Residual | -2.118 | 2.964 | .000 | 1.001 | 400 | |
Deleted Residual | -286.415 | 411.494 | -.014 | 135.570 | 400 | |
Stud. Deleted Residual | -2.127 | 2.993 | .000 | 1.003 | 400 | |
Mahal. Distance | .000 | 23.022 | .997 | 2.245 | 400 | |
Cook's Distance | .000 | .252 | .003 | .013 | 400 | |
Centered Leverage Value | .000 | .058 | .003 | .006 | 400 | |
a. Dependent Variable: api 2000 |
graph /scatterplot(bivar)=enroll with api00 /missing=listwise .
regression /dependent api00 /method=enter enroll /scatterplot=(*zresid ,*adjpred ) .
regression plot | |
Keyword | Statistic |
dependnt | dependent variable |
*zpred | standardized predicted values |
*zresid | standardized residuals |
*dresid | deleted residuals |
*adjpred . | adjusted predicted values |
*sresid | studentized residuals |
*sdresid | studentized deleted residuals |
예상학점과 클래스 평가 | ||||
predGP | clsQuality | predGP2 | clsQuality2 | XY |
3.50 | 3.40 | 12.25 | 11.56 | 11.9 |
3.20 | 2.90 | 10.24 | 8.41 | 9.28 |
2.80 | 2.60 | 7.84 | 6.76 | 7.28 |
3.30 | 3.80 | 10.89 | 14.44 | 12.54 |
3.20 | 3.00 | 10.24 | 9.00 | 9.6 |
3.20 | 2.50 | 10.24 | 6.25 | 8 |
3.60 | 3.90 | 12.96 | 15.21 | 14.04 |
4.00 | 4.30 | 16.00 | 18.49 | 17.2 |
3.00 | 3.80 | 9.00 | 14.44 | 11.4 |
3.10 | 3.40 | 9.61 | 11.56 | 10.54 |
3.00 | 2.80 | 9.00 | 7.84 | 8.4 |
3.30 | 2.90 | 10.89 | 8.41 | 9.57 |
3.20 | 4.10 | 10.24 | 16.81 | 13.12 |
3.40 | 2.70 | 11.56 | 7.29 | 9.18 |
3.70 | 3.90 | 13.69 | 15.21 | 14.43 |
3.80 | 4.10 | 14.44 | 16.81 | 15.58 |
3.80 | 4.20 | 14.44 | 17.64 | 15.96 |
3.70 | 3.10 | 13.69 | 9.61 | 11.47 |
4.20 | 4.10 | 17.64 | 16.81 | 17.22 |
3.80 | 3.60 | 14.44 | 12.96 | 13.68 |
3.30 | 4.30 | 10.89 | 18.49 | 14.19 |
3.20 | 4.00 | 10.24 | 16.00 | 12.8 |
3.10 | 2.10 | 9.61 | 4.41 | 6.51 |
3.90 | 3.80 | 15.21 | 14.44 | 14.82 |
4.30 | 2.70 | 18.49 | 7.29 | 11.61 |
2.90 | 4.40 | 8.41 | 19.36 | 12.76 |
3.20 | 3.10 | 10.24 | 9.61 | 9.92 |
3.50 | 3.60 | 12.25 | 12.96 | 12.6 |
3.30 | 3.90 | 10.89 | 15.21 | 12.87 |
3.20 | 2.90 | 10.24 | 8.41 | 9.28 |
4.10 | 3.70 | 16.81 | 13.69 | 15.17 |
3.50 | 2.80 | 12.25 | 7.84 | 9.8 |
3.60 | 3.30 | 12.96 | 10.89 | 11.88 |
3.70 | 3.70 | 13.69 | 13.69 | 13.69 |
3.30 | 4.20 | 10.89 | 17.64 | 13.86 |
3.60 | 2.90 | 12.96 | 8.41 | 10.44 |
3.50 | 3.90 | 12.25 | 15.21 | 13.65 |
3.40 | 3.50 | 11.56 | 12.25 | 11.9 |
3.00 | 3.80 | 9.00 | 14.44 | 11.4 |
3.40 | 4.00 | 11.56 | 16.00 | 13.6 |
3.70 | 3.10 | 13.69 | 9.61 | 11.47 |
3.80 | 4.20 | 14.44 | 17.64 | 15.96 |
3.70 | 3.00 | 13.69 | 9.00 | 11.1 |
3.70 | 4.80 | 13.69 | 23.04 | 17.76 |
3.30 | 3.00 | 10.89 | 9.00 | 9.9 |
4.00 | 4.40 | 16.00 | 19.36 | 17.6 |
3.60 | 4.40 | 12.96 | 19.36 | 15.84 |
3.30 | 3.40 | 10.89 | 11.56 | 11.22 |
4.10 | 4.00 | 16.81 | 16.00 | 16.4 |
3.30 | 3.50 | 10.89 | 12.25 | 11.55 |
sum(X) = 174.30 | sum(Y) = 177.50 | |||
Sx = 0.351 | Sy = 0.614 | |||
SSx = 613.650 | SSy = 648.570 | SP = 621.94 |