Variable Labels Variable Position Label snum 1 school number dnum 2 district number api00 3 api 2000 api99 4 api 1999 growth 5 growth 1999 to 2000 meals 6 pct free meals ell 7 english language learners yr_rnd 8 year round school 무방학학교 mobility 9 pct 1st year in school acs_k3 10 avg class size k-3 acs_46 11 avg class size 4-6 not_hsg 12 parent not hsg hsg 13 parent hsg some_col 14 parent some college col_grad 15 parent college grad grad_sch 16 parent grad school avg_ed 17 avg parent ed full 18 pct full credential emer 19 pct emer credential enroll 20 number of students mealcat 21 Percentage free meals in 3 categories collcat 22 <none> Variables in the working file mealcat: 1 = 0-46% free meals 2 = 47-80 3 = 81-100
regression /dep api00 /method = enter yr_rnd.
Model Summary | ||||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .475a | 0.226 | 0.224 | 125.3 |
a. Predictors: (Constant), year round school |
ANOVA(b) | ||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | |
1 | Regression | 1825000.563 | 1 | 1825000.563 | 116.241 | .000a |
Residual | 6248671.435 | 398 | 15700.179 | |||
Total | 8073671.997 | 399 | ||||
a. Predictors: (Constant), year round school | ||||||
b. Dependent Variable: api 2000 |
Coefficients(a) | ||||||
Unstandardized Coefficients | Standardized Coefficients | |||||
Model | B | Std. Error | Beta | t | Sig. | |
1 | (Constant) | 684.539 | 7.14 | 95.878 | 0 | |
year round school | -160.506 | 14.887 | -0.475 | -10.782 | 0 | |
a. Dependent Variable: api 2000 |
IGRAPH /X1 = VAR(yr_rnd) TYPE = scale /Y = VAR (api00) TYPE = SCALE /FITLINE METHOD = REGRESSION LINEAR LINE = TOTAL MEFFECT /CATORDER VAR(yr_rnd) (ASCENDING VALUES OMITEMPTY) /SCATTER COINCIDENT = NONE.
MEANS TABLES=api00 BY yr_rnd.
Report | |||
api 2000 | |||
year round school | Mean | N | Std. Deviation |
No | 684.54 | 308 | 132.113 |
Yes | 524.03 | 92 | 98.916 |
Total | 647.62 | 400 | 142.249 |
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .867a .752 .752 70.908 a. Predictors: (Constant), Percentage free meals in 3 categories ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 6072527.519 1 6072527.519 1207.742 .000a Residual 2001144.479 398 5028.001 Total 8073671.997 399 a. Predictors: (Constant), Percentage free meals in 3 categories b. Dependent Variable: api 2000 Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 950.987 9.422 100.935 .000 Percentage free meals in 3 categories -150.553 4.332 -.867 -34.753 .000 a. Dependent Variable: api 2000
compute mealcat1 = 0. if mealcat = 1 mealcat1 = 1. compute mealcat2 = 0. if mealcat = 2 mealcat2 = 1. compute mealcat3 = 0. if mealcat = 3 mealcat3 = 1. execute.
regression /dependent api00 /method = enter mealcat2 mealcat3. 주의. 세개의 변인을 모두 넣지 않는다.
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .869a .755 .754 70.612 a. Predictors: (Constant), mealcat3, mealcat2 ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 6094197.670 2 3047098.835 611.121 .000a Residual 1979474.328 397 4986.081 Total 8073671.997 399 a. Predictors: (Constant), mealcat3, mealcat2 b. Dependent Variable: api 2000 Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 805.718 6.169 130.599 .000 mealcat2 -166.324 8.708 -.550 -19.099 .000 mealcat3 -301.338 8.629 -1.007 -34.922 .000 a. Dependent Variable: api 2000
Coefficients(a) | ||||||
Unstandardized Coefficients | Standardized Coefficients | |||||
Model | B | Std. Error | Beta | t | Sig. | |
1 | (Constant) | 805.718 | 6.169 | 130.599 | .000 | |
mealcat2 | -166.324 | 8.708 | -.550 | -19.099 | .000 | |
mealcat3 | -301.338 | 8.629 | -1.007 | -34.922 | .000 | |
a. Dependent Variable: api 2000 |
Report api 2000 Percentage free meals in 3 categories Mean N Std. Deviation 0-46% free meals 805.72 131 65.669 47-80% free meals 639.39 132 82.135 81-100% free meals 504.38 137 62.727 Total 647.62 400 142.249
glm api00 by mealcat /print=parameter.
Between-Subjects Factors | |||
Value Label | N | ||
Percentage free meals in 3 categories | 1 | 0-46% free meals | 131 |
2 | 47-80% free meals | 132 | |
3 | 81-100% free meals | 137 |
Tests of Between-Subjects Effects | ||||||
Dependent Variable:api 2000 | ||||||
Source | Type III Sum of Squares | df | Mean Square | F | Sig. | |
Corrected Model | 6.094E6 | 2 | 3047098.835 | 611.121 | .000 | |
Intercept | 1.688E8 | 1 | 1.688E8 | 33863.695 | .000 | |
mealcat | 6094197.670 | 2 | 3047098.835 | 611.121 | .000 | |
Error | 1979474.328 | 397 | 4986.081 | |||
Total | 1.758E8 | 400 | ||||
Corrected Total | 8073671.997 | 399 | ||||
a. R Squared = .755 (Adjusted R Squared = .754) |
Parameter Estimates | |||||||
Dependent Variable:api 2000 | |||||||
95% Confidence Interval | |||||||
Parameter | B | Std. Error | t | Sig. | Lower Bound | Upper Bound | |
Intercept | 504.380 | 6.033 | 83.606 | .000 | 492.519 | 516.240 | |
mealcat=1 | 301.338 | 8.629 | 34.922 | .000 | 284.374 | 318.302 | |
mealcat=2 | 135.014 | 8.612 | 15.677 | .000 | 118.083 | 151.945 | |
mealcat=3 | 0a | . | . | . | . | . | |
a. This parameter is set to zero because it is redundant. |
ONEWAY api00 BY mealcat /STATISTICS DESCRIPTIVES EFFECTS HOMOGENEITY /PLOT MEANS /MISSING ANALYSIS /POSTHOC=TUKEY SCHEFFE ALPHA(0.05).
regression /dep api00 /method = enter yr_rnd mealcat1 mealcat2.
Model Summary | |||||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | |
1 | .876a | .767 | .765 | 68.893 | |
a. Predictors: (Constant), mealcat2, year round school, mealcat1 |
ANOVA(b) | |||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 6194144.303 | 3 | 2064714.768 | 435.017 | .000a | |
Residual | 1879527.694 | 396 | 4746.282 | ||||
Total | 8073671.997 | 399 | |||||
a. Predictors: (Constant), mealcat2, year round school, mealcat1 | |||||||
b. Dependent Variable: api 2000 |
Coefficients(a) | |||||||
Unstandardized Coefficients | Standardized Coefficients | ||||||
Model | B | Std. Error | Beta | t | Sig. | ||
1 | (Constant) | 526.330 | 7.585 | 69.395 | .000 | ||
year round school | -42.960 | 9.362 | -.127 | -4.589 | .000 | ||
mealcat1 | 281.683 | 9.446 | .930 | 29.821 | .000 | ||
mealcat2 | 117.946 | 9.189 | .390 | 12.836 | .000 | ||
a. Dependent Variable: api 2000 |
regression /dep api00 /method = enter yr_rnd /method = test(mealcat1 mealcat2).
Model Summary | ||||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .475a | .226 | .224 | 125.300 |
2 | .876b | .767 | .765 | 68.893 |
a. Predictors: (Constant), year round school | ||||
b. Predictors: (Constant), year round school, mealcat2, mealcat1 |
ANOVA(d) | ||||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | R Square Change | ||
1 | Regression | 1825000.563 | 1 | 1825000.563 | 116.241 | .000a | ||
Residual | 6248671.435 | 398 | 15700.179 | |||||
Total | 8073671.997 | 399 | ||||||
2 | Subset Tests | mealcat1, mealcat2 | 4369143.740 | 2 | 2184571.870 | 460.270 | .000b | .541 |
Regression | 6194144.303 | 3 | 2064714.768 | 435.017 | .000c | |||
Residual | 1879527.694 | 396 | 4746.282 | |||||
Total | 8073671.997 | 399 | ||||||
a. Predictors: (Constant), year round school | ||||||||
b. Tested against the full model. | ||||||||
c. Predictors in the Full Model: (Constant), year round school, mealcat2, mealcat1. | ||||||||
d. Dependent Variable: api 2000 |
Coefficients(a) | ||||||
Unstandardized Coefficients | Standardized Coefficients | |||||
Model | B | Std. Error | Beta | t | Sig. | |
1 | (Constant) | 684.539 | 7.140 | 95.878 | .000 | |
year round school | -160.506 | 14.887 | -.475 | -10.782 | .000 | |
2 | (Constant) | 526.330 | 7.585 | 69.395 | .000 | |
year round school | -42.960 | 9.362 | -.127 | -4.589 | .000 | |
mealcat1 | 281.683 | 9.446 | .930 | 29.821 | .000 | |
mealcat2 | 117.946 | 9.189 | .390 | 12.836 | .000 | |
a. Dependent Variable: api 2000 |
Excluded Variables(b) | ||||||
Collinearity Statistics | ||||||
Model | Beta In | t | Sig. | Partial Correlation | Tolerance | |
1 | mealcat1 | .697a | 23.132 | .000 | .758 | .914 |
mealcat2 | -.138a | -3.106 | .002 | -.154 | .962 | |
a. Predictors in the Model: (Constant), year round school | ||||||
b. Dependent Variable: api 2000 |
interpretation | |||
mealcat=1 | mealcat=2 | mealcat=3 | |
yr_rnd=0 | cell1 | cell2 | cell3 |
yr_rnd=1 | cell4 | cell5 | cell6 |
interpretation | |||
mealcat=1 | mealcat=2 | mealcat=3 | |
yr_rnd=0 | cell1 | cell2 | cell3 |
intercept+ BMealCat1 | intercept+ BMealCat2 | intercept | |
yr_rnd=1 | cell4 | cell5 | cell6 |
intercept+ BMealCat1+ Byr_rnd | intercept+ BMealCat2+ Byr_rnd | intercept+ Byr_rnd |
glm api00 BY yr_rnd mealcat /DESIGN = yr_rnd mealcat /print=parameter TEST(LMATRIX).
regress /dep = api00 /method = enter yr_rnd some_col /save pre. * pre = predicted value (y hat). output: Model Summary(b) Model R R Square Adjusted R Square Std. Error of the Estimate 1 .507a .257 .253 122.951 a. Predictors: (Constant), parent some college, year round school b. Dependent Variable: api 2000 ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 2072201.839 2 1036100.919 68.539 .000a Residual 6001470.159 397 15117.053 Total 8073671.997 399 a. Predictors: (Constant), parent some college, year round school b. Dependent Variable: api 2000 Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 637.858 13.503 47.237 .000 year round school -149.159 14.875 -.442 -10.027 .000 parent some college 2.236 553 .178 4.044 .000 a. Dependent Variable: api 2000
COMPUTE filt=(yr_rnd=0). FILTER BY filt. regress /dep = api00 /method = enter some_col.
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .126a .016 .013 131.278 a. Predictors: (Constant), parent some college ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 84700.858 1 84700.858 4.915 .027a Residual 5273591.675 306 17233.960 Total 5358292.532 307 a. Predictors: (Constant), parent some college b. Dependent Variable: api 2000 Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 655.110 15.237 42.995 .000 parent some college 1.409 .636 .126 2.217 .027 a. Dependent Variable: api 2000
COMPUTE filt=(yr_rnd=1). FILTER BY filt. regress /dep = api00 /method = enter some_col. Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .648a .420 .413 75.773 a. Predictors: (Constant), parent some college ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 373644.064 1 373644.064 65.078 .000a Residual 516734.838 90 5741.498 Total 890378.902 91 a. Predictors: (Constant), parent some college b. Dependent Variable: api 2000 Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 407.039 16.515 24.647 .000 parent some college 7.403 .918 .648 8.067 .000 a. Dependent Variable: api 2000
compute yrXsome = yr_rnd*some_col. execute.
regress /dep = api00 /method = enter some_col yr_rnd yrXsome /save pre.
output: Model Summary(b) Model R R Square Adjusted R Square Std. Error of the Estimate 1 .532a .283 .277 120.922 a. Predictors: (Constant), yrXsome, parent some college, year round school b. Dependent Variable: api 2000 ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 2283345.485 3 761115.162 52.053 .000a Residual 5790326.513 396 14622.037 Total 8073671.997 399 a. Predictors: (Constant), yrXsome, parent some college, year round school b. Dependent Variable: api 2000 Coefficients(a) Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 655.110 14.035 46.677 .000 parent some college 1.409 .586 .112 2.407 .017 year round school -248.071 29.859 -.735 -8.308 .000 __yrXsome__ 5.993 1.577 .330 3.800 .000 a. Dependent Variable: api 2000 Residuals Statistics(a) Minimum Maximum Mean Std. Deviation N Predicted Value 407.04 749.54 647.62 75.648 400 Residual -275.118 279.252 .000 120.466 400 Std. Predicted Value -3.180 1.347 .000 1.000 400 Std. Residual -2.275 2.309 .000 .996 400 a. Dependent Variable: api 2000
glm api00 BY yr_rnd WITH some_col /DESIGN = some_col yr_rnd yr_rnd*some_col. or UNIANOVA api00 BY yr_rnd WITH some_col /DESIGN=yr_rnd some_col some_col*yr_rnd /print=parameter .