FrontPage › Statnet
1. User Guides ¶
All the materials here is names of apckages for
R (a statistical software, click here for more information)
![[http]](/imgs/http.png)
All articles here are from articles in Journal of Statistical Software, 24 (2008), also available from :
Statnet user guide pages
![[http]](/imgs/http.png)
Introduction to ergm (eponential family random graphic models) and an overview of statnet
network A package for managing relational data in R
ergm A package to fit, simulate and diagnose exponential family random models for networks
Using ergm: Specification of exponential family random graph models and computational tips
latentnet a package for fitting latent cluster models for networks
sna A package for social network analysis
dynamicnetwork and rSoNIA: Prototype packages for managing and animating longitudinal network data
networksis: A Package to Simulate Bipartite Graphs with Fixed Marginals Through Sequential Importance Sampling
A tutorial on statnet
network A package for managing relational data in R
ergm A package to fit, simulate and diagnose exponential family random models for networks
Using ergm: Specification of exponential family random graph models and computational tips
latentnet a package for fitting latent cluster models for networks
sna A package for social network analysis
dynamicnetwork and rSoNIA: Prototype packages for managing and animating longitudinal network data
networksis: A Package to Simulate Bipartite Graphs with Fixed Marginals Through Sequential Importance Sampling
A tutorial on statnet
v24i09.R: R example code from the paper
install.packages("statnet") library("statnet") data("faux.magnolia.high") fmh <- faux.magnolia.high fmh plot(fmh, displayisolates = FALSE) table(component.dist(fmh)$csize) summary(fmh) plot(fmh, displayisolates = FALSE, vertex.col = "Grade") fmh.degreedist <- table(degree(fmh, cmode = "indegree")) fmh.degreedist summary(fmh ~ degree(0:8)) help(package = "sna") summary(fmh ~ degree(0:8, "Sex")) summary(fmh ~ triangle) summary(fmh ~ edges + triangle) mixingmatrix(fmh, "Grade") gr <- fmh %v% "Grade" table(gr) save.image() model1 <- ergm(fmh ~ edges) summary(model1) names(model1) model1$coef model1$mle.lik model2 <- ergm(fmh ~ edges + nodematch("Grade") + nodematch("Race") + nodematch("Sex")) summary(model2) model2$mle.lik sim2 <- simulate(model2, burnin = 1e+6, verbose = TRUE, seed = 9) mixingmatrix(sim2, "Race") mixingmatrix(fmh, "Race") plot(summary(fmh ~ degree(0:10)), type = "l", lty = 1, lwd = 2, xlab = "Degree", ylab = "Count") lines(summary(sim2 ~ degree(0:10)), lty = 2, lwd = 3) legend("topright", legend = c("Observed", "Simulated"), lwd = 3, lty = 1:2) c(fmh = summary(fmh ~ triangle), sim2 = summary(sim2 ~ triangle)) model3 <- ergm(fmh ~ edges + triangle, seed = 99) pdf("model3diagnostics.pdf") mcmc.diagnostics(model3) dev.off() model3 <- ergm(fmh ~ edges + triangle, verbose = TRUE, seed = 99) model3.take2 <- ergm(fmh ~ edges + triangle, MCMCsamplesize = 1e+5, interval = 1000, verbose = TRUE, seed = 88) model3.take3 <- ergm(fmh ~ edges + triangle, maxit = 25, seed = 888, control = control.ergm(steplength = 0.25), verbose = TRUE) model4.take1 <- ergm(fmh ~ edges + nodematch("Grade") + nodematch("Race") + nodematch("Sex") + gwesp(0, fixed = TRUE), MCMCsamplesize = 1e+5, maxit = 15, verbose = TRUE, control = control.ergm(steplength = 0.25), seed = 123) model4.take1$coef model4.take2 <- ergm(fmh ~ edges + nodematch("Grade") + nodematch("Race") + nodematch("Sex") + gwesp(0.1, fixed = TRUE), MCMCsamplesize = 1e+5, maxit = 15, verbose = TRUE, control = control.ergm(steplength = 0.25), seed = 123) model4.take3 <- ergm(fmh ~ edges + nodematch("Grade") + nodematch("Race") + nodematch("Sex") + gwesp(0.2, fixed = TRUE), MCMCsamplesize = 1e+5, maxit = 15, verbose = TRUE, control = control.ergm(steplength = 0.25), seed = 123) c(model4.take1$mle.lik, model4.take2$mle.lik, model4.take3$mle.lik) model4 <- model4.take3 model4$coef sim4 <- simulate(model4, burnin = 1e+5, interval = 1e+5, nsim = 100, verbose = TRUE, seed = 321) class(sim4) names(sim4) class(sim4$networks[[1]]) model4.tridist <- sapply(sim4$networks, function(x) summary(x ~ triangle)) hist(model4.tridist, xlab = "Triangles") fmh.tri <- summary(fmh ~ triangle) arrows(fmh.tri, 20, fmh.tri, 5, col = "red", lwd = 3) sum(fmh.tri <= model4.tridist) gof4.deg <- gof(model4 ~ degree, verbose = TRUE, burnin = 1e+5, interval = 1e+5, seed = 246) plot(gof4.deg) gof4.deg gof4.esp.dist <- gof(model4 ~ espartners + distance, verbose = TRUE, burnin = 1e+5, interval = 1e+5, seed = 642) get(getOption("device"))(width = 8, height = 4) par(mfrow = c(1, 2)) plot(gof4.esp.dist, plotlogodds = TRUE)
2. attached documents ¶








