FrontPagerobots.txt Variance
Mean,Mode,Median 등의 중심경향값과 더불어서 많이 사용되는 statistics, 통계치로는 데이터가 얼마나 퍼져 있는지 (spread)를 나타내는 분산(variation)의 정도를 나타내 주는 statistics, 통계치가 있다. 가장 평이하고 이해하기 쉬운 개념으로는 범위 혹은 Range 가 있으며, 다소 직관적이지는 않지만 여러가지 통계 계산에 사용되는 것으로는 Variance(분산)이 있다.

아래의 그래프는 각각 그 평균과 분산값이 다른 그래프이다. 각각 녹색라인의 경우 (가장 왼쪽), 평균은 0, 분산값은 25 이고; 청색라인은 평균이 7, 분산값은 4, 마지막으로 오렌지색 라인의 경우는 평균은 10, 분산 값은 1 인 경우이다 (please ignore the squre value in the figure).

variance01.jpg
[JPG image (27.92 KB)]


그림에서 직관적으로 보고 알 수 있듯이 분산은 그래프의 분포가 평균을 중심으로 얼마나 퍼져있는지를 (spread) 나타내주는 일종의 지표이다. 어떤 집합이 평균을 중심으로 얼마나 퍼져 있는가를 알아보기 위한 방법으로는 상식적으로 떠올릴 수 있는 것은 각 개인의 점수가 평균에서 얼마나 떨어져 있는가를 측정하여 모두 더한 후 이를 개인 수로 (number of elements) 나누는 방법을 떨올릴 수 있다. 개인의 점수가 평균에서 얼마나 떨어져 있는가를 deviation score라고 한다. 아래의 그래프는 평균이 100인 그래프를 그린 것인데, 어느 한 개인의 점수가 120이라고 하면 그 개인의 deviation score는 120-100, 즉 20이라고 할 수 있다.

DeviationScore.jpg
[JPG image (57.43 KB)]


개인의 deviation score를 모두 더하는 것은 아래의 수식으로 표현할 수 있다. 즉, 어떤 집합의 개인의 숫자가 N이라고 하고, 각 개인을 Xi 로 나타낼 때, deviation score의 합은 아래와 같다.

$Sum\; of\; Deviation \; Score = \displaystyle \sum_{i=1}^n ({X_i-\mu})$

이를 집합을 이루는 개인의 숫자인 n으로 나누면 다음과 같이 표현할 수 있다.

$\text{Average \; of \; Deviation \; Score} = \displaystyle \frac{\displaystyle  \sum_{i=1}^N ({X_i-\mu})}{N}$

이렇게 하면 "개인들의 점수가 평균에서 얼마나 떨어져 있는지를 종합적으로 나타내 주는 지수가 될 수 있는것 처럼 보인다. 그러나, 이 방법의 문제는 deviation score의 합은 언제나 0이라는 점에 있다. 즉, 어떤 집합이든지 분산값을 위와 같이 구하려고 한다면, 그 분자 값은 언제나 0이 된다는 점이다. 사실 평균이 하는 역할 중의 하나는 바로 각 개인의 수치의 무게중심을 찾아 주는 역할이므로 이와 같은 결과가 당연하다. 아래는 이를 나타내 주는 예이다.

Xscoredeviation score
X1 3 3-4=-1
X2 4 4-4=0
X3 3 3-4=-1
X4 4 4-4=0
X5 6 6-4=2
total 20 0
Mean 4
n 5

deviation score의 합을 구하기 전에 각 deviation score의 값을 제곱을 하여 주면 이와 같은 결과를 방지할 수 있는데, 이를 수식으로 표현하면 아래와 같다.

$\displaystyle \frac{\displaystyle \sum_{i=1}^N (X_i-\mu)^2}{N}$

분산 값은 위와 같은 방법을 이용하여 구하게 된다. 따라서,

$Var[X] = \sigma^2= \displaystyle \frac{\displaystyle \sum_{i=1}^N (X_i-\mu)^2}{N}$

이를 우리나라 말로 옮기자면, "X 변인의 분산값은 X 변인의 각 개체값에서 평균값을 뺀 수의 제곱을 모두 더한 후, 이를 개체 수인 n으로 나누어 주어서 구한다"라고 읽는다. 따라서 위의 보기에서 들었던 X 변인의 집합에서 분산 값은 1.5이다.

Xscoredeviation scoresquared value
X1 3 3-4=-1 1
X2 4 4-4=0 0
X3 3 3-4=-1 1
X4 4 4-4=0 0
X5 6 6-4=2 4
total 20 0 6
Mean, Variance 4 6/4 = 1.5
n 5 5

분산의 공식을 5명으로 이루어진 집합에 사용하는 것은 큰 무리가 없지만, 100명으로 이루어진 집합에 적용하는 것은 손이 많이 간다는 단점이 있다. 따라서, 위의 분산 공식을 변형한 공식을 쓰기도 하는데, 형식만 다를 뿐이지 똑같은 공식이다.

$ \sigma^2 = \displaystyle \frac{\displaystyle \sum (X_i-\mu)^2}{N}$ 에서

\begin{eqnarray*}
\sum (X_i-\mu)^2 & = & \sum [(X_i^2)-(2*X_i*\mu)+(\mu^2)] \\
& = & \sum (X_i)^2 - \sum (2*X_i*\mu) + \sum (\mu^2) \\
& = & \sum (X_i)^2 - 2 \mu \sum (X_i) + N (\mu^2) \\
& = & \sum (X_i)^2 - 2 \mu (N * \mu) + N (\mu^2) \\
& = & \sum (X_i^2) - N * \mu^2
\end{eqnarray*}
x
위에서, $\text{2 and}$ $\mu$ $\text{are constants. }$


\begin{align*}
\displaystyle \mu & = \frac{\sum (X_i)}{N} \\
\sum (X_i) & = N * \mu \\
\end{align*}


따라서 분산값은 아래의 공식으로도 구할 수 있다.

\begin{eqnarray}
\sigma^2 & = & \displaystyle \frac{\sum (X_i^2) - N * \mu^2}{N} \nonumber \\
& = & \displaystyle \frac{\sum (X_i^2)}{N} - \mu^2
\end{eqnarray}

분산값이 크고 작고가 의미하는 것은 그 집합의 분포가 평균을 중심으로 얼마나 넓게 퍼져 있는가를 나타내 준다는 것이다. 만약에 분산 값이 크다면 그 집합의 분포가 평균을 중심으로 넓게 퍼져있음을 의미한다.

Read more

샘플의 분산으로 모집단의 분산값을 추정할 때에는, 샘플의 숫자인 $n$ 대신에 $n-1$ 을 사용하기도 한다 (참조. estimated standard deviation. 샘플의 분산은 $s^2$ 을 기호로 사용한다.

$ s^2 = Var[X] = \displaystyle \frac{\displaystyle \sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$

흔히들 부르기를, 분산 공식의 분자부분을 Sum of Squares라고 부르고 줄여서 SS라고 쓰고, n-1을 degrees of freedom 혹은 이를 줄여서 df라고 쓴다. 따라서 위의 분산을 구하는 식은 아래와 같이 표현될 수 있다.

$s^2 = \displaystyle \frac{SS}{df}$




Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2012-05-08 14:46:57
Processing time 0.0112 sec